科目: 來源:2012年全國普通高等學校招生統(tǒng)一考試理科數學(北京卷解析版) 題型:解答題
已知函數![]()
(Ⅰ)求
的定義域及最小正周期
(Ⅱ)求
的單調遞增區(qū)間。
【解析】(1)只需
,∴
∴
的定義域為![]()
![]()
![]()
![]()
![]()
![]()
![]()
∴最小正周期為![]()
(2)
,![]()
∴
,![]()
∴
的單調遞增區(qū)間為
和
(
)
查看答案和解析>>
科目: 來源:2012年全國普通高等學校招生統(tǒng)一考試理科數學(北京卷解析版) 題型:解答題
如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點,且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.
(1) 求證:A1C⊥平面BCDE;
(2) 若M是A1D的中點,求CM與平面A1BE所成角的大;
(3) 線段BC上是否存在點P,使平面A1DP與平面A1BE垂直?說明理由
【解析】(1)∵
DE∥BC∴
∴
∴
∴
又∵
∴![]()
(2)如圖,以C為坐標原點,建立空間直角坐標系C-xyz,
![]()
則![]()
![]()
設平面
的法向量為
,則
,又
,
,所以
,令
,則
,所以
,
設CM與平面
所成角為
。因為
,
所以![]()
所以CM與平面
所成角為
。
查看答案和解析>>
科目: 來源:2012年全國普通高等學校招生統(tǒng)一考試理科數學(北京卷解析版) 題型:解答題
近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設置了相應的垃圾箱。為調查居民生活垃圾分類投放情況,現(xiàn)隨機抽取了該市三類垃圾箱中總計1000噸生活垃圾,數據統(tǒng)計如下(單位:噸):
|
|
“廚余垃圾”箱 |
“可回收物”箱 |
“其他垃圾”箱 |
|
廚余垃圾 |
400 |
100 |
100 |
|
可回收物 |
30 |
240 |
30 |
|
其他垃圾 |
20 |
20 |
60 |
(Ⅰ)試估計廚余垃圾投放正確的概率
(Ⅱ)試估計生活垃圾投放錯誤的概率
(Ⅲ)假設廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分別為a,b,c,其中a>0,a+b+c=600.當數據a,b,c,的方差
最大時,寫出a,b,c的值(結論不要求證明),并求此時
的值。
(注:
,其中
為數據
的平均數)
【解析】(1)廚余垃圾投放正確的概率約為![]()
(2)設生活垃圾投放錯誤為事件A,則事件
表示生活垃圾投放正確。事件
的概率約為“廚余垃圾”箱里廚余垃圾量、“可回收物”箱里可回收物量與“其他垃圾”箱里其他垃圾量的總和除以生活垃圾總量,即
約為
,所以
約為![]()
(3)當
時,方差取得最大值,因為
,
所以![]()
查看答案和解析>>
科目: 來源:2012年全國普通高等學校招生統(tǒng)一考試理科數學(北京卷解析版) 題型:解答題
已知函數
,(
),![]()
(1)若曲線
與曲線
在它們的交點(1,c)處具有公共切線,求a,b的值
(2)當
時,若函數
的單調區(qū)間,并求其在區(qū)間(-∞,-1)上的最大值。
【解析】(1)
,
∵曲線
與曲線
在它們的交點(1,c)處具有公共切線
∴
,![]()
∴![]()
(2)令
,當
時,![]()
令
,得![]()
時,
的情況如下:
|
x |
|
|
|
|
|
|
|
+ |
0 |
- |
0 |
+ |
|
|
|
|
|
|
|
所以函數
的單調遞增區(qū)間為
,
,單調遞減區(qū)間為![]()
當
,即
時,函數
在區(qū)間
上單調遞增,
在區(qū)間
上的最大值為
,
當
且
,即
時,函數
在區(qū)間
內單調遞增,在區(qū)間
上單調遞減,
在區(qū)間
上的最大值為![]()
當
,即a>6時,函數
在區(qū)間
內單調遞贈,在區(qū)間
內單調遞減,在區(qū)間
上單調遞增。又因為![]()
所以
在區(qū)間
上的最大值為
。
查看答案和解析>>
科目: 來源:2012年全國普通高等學校招生統(tǒng)一考試理科數學(北京卷解析版) 題型:解答題
已知曲線C:
(m∈R)
(1) 若曲線C是焦點在x軸點上的橢圓,求m的取值范圍;
(2) 設m=4,曲線c與y軸的交點為A,B(點A位于點B的上方),直線y=kx+4與曲線c交于不同的兩點M、N,直線y=1與直線BM交于點G.求證:A,G,N三點共線。
【解析】(1)曲線C是焦點在x軸上的橢圓,當且僅當
解得
,所以m的取值范圍是![]()
(2)當m=4時,曲線C的方程為
,點A,B的坐標分別為
,
由
,得![]()
因為直線與曲線C交于不同的兩點,所以![]()
即![]()
設點M,N的坐標分別為
,則![]()
![]()
直線BM的方程為
,點G的坐標為![]()
因為直線AN和直線AG的斜率分別為![]()
所以
![]()
![]()
即
,故A,G,N三點共線。
查看答案和解析>>
科目: 來源:2012年全國普通高等學校招生統(tǒng)一考試理科數學(北京卷解析版) 題型:解答題
設A是由m×n個實數組成的m行n列的數表,滿足:每個數的絕對值不大于1,且所有數的和為零,記s(m,n)為所有這樣的數表構成的集合。
對于A∈S(m,n),記ri(A)為A的第ⅰ行各數之和(1≤ⅰ≤m),Cj(A)為A的第j列各數之和(1≤j≤n):
記K(A)為∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。
(1) 對如下數表A,求K(A)的值;
|
1 |
1 |
-0.8 |
|
0.1 |
-0.3 |
-1 |
(2)設數表A∈S(2,3)形如
|
1 |
1 |
c |
|
a |
b |
-1 |
求K(A)的最大值;
(3)給定正整數t,對于所有的A∈S(2,2t+1),求K(A)的最大值。
【解析】(1)因為
,![]()
所以![]()
(2) 不妨設
.由題意得
.又因為
,所以
,
于是
,
,
![]()
所以
,當
,且
時,
取得最大值1。
(3)對于給定的正整數t,任給數表
如下,
|
|
|
… |
|
|
|
|
… |
|
任意改變A的行次序或列次序,或把A中的每一個數換成它的相反數,所得數表
,并且
,因此,不妨設
,
且![]()
。
由
得定義知,
,![]()
![]()
又因為![]()
所以![]()
![]()
![]()
所以,![]()
對數表
:
|
1 |
1 |
… |
1 |
|
… |
|
|
|
|
… |
|
-1 |
… |
-1 |
則
且
,
綜上,對于所有的
,
的最大值為![]()
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com