分析:(I)根據(jù)
{an}滿足a1=1,an+an+1=,可構(gòu)造新數(shù)列{an-
},為等比數(shù)列,求出新數(shù)列的通項(xiàng)公式,再根據(jù)新數(shù)列的通項(xiàng)公式,就可求出{a
n}的通項(xiàng)公式.
(II)利用放縮法證明,先求當(dāng)k由1到n時(shí),(a
k-a
k+1)(sina
k-sina
k+1)的每一項(xiàng)的范圍,可構(gòu)造函數(shù)f(x)=x-sinx,x∈(0,1],利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,得到a
k-sina
k>a
k+1-sina
k+1,∴0<sina
k-sina
k+1<a
k-a
k+1,再根據(jù)又a
k-a
k+1>0,得到,(a
k-a
k+1)(sina
k-sina
k+1)<(a
k-a
k+1)
2=
,最后就可得出結(jié)論.
解答:解:(I)∵a
n+a
n+1=
,∴a
n+1-
=-(an-),
∴a
n-
=(a1-)(-1)n-1=0,an=.
(II)設(shè)f(x)=x-sinx,x∈(0,1],
| | 當(dāng)x∈(0,1)時(shí),f′(x)=1-cosx>0,f(x)在(0,1 |
| |
]單調(diào)遞增.∵1>a
k>a
k+1>0,
∴f(a
k)>f(a
k+1),即a
k-sina
k>a
k+1-sina
k+1,
∴0<sina
k-sina
k+1<a
k-a
k+1,
又a
k-a
k+1>0,∴(a
k-a
k+1)(sina
k-sina
k+1)<(a
k-a
k+1)
2=
,
 |
| k=1 |
n(a
k-a
k+1)(sina
k-sina
k+1)<
| n |
 |
| k=1 |
=<=. 點(diǎn)評(píng):本題考查了數(shù)列和函數(shù)的綜合,綜合性強(qiáng),做題時(shí)應(yīng)認(rèn)真分析,找到兩者之間的聯(lián)系.