【題目】某中學(xué)擬在高一下學(xué)期開設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學(xué)生中抽取100人做調(diào)查,得到
列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計(jì) | |
男生 | 40 | ||
女生 | 30 | ||
合計(jì) | 100 |
且已知在100個(gè)人中隨機(jī)抽取1人,抽到喜歡游泳的學(xué)生的概率為
.
(1)請(qǐng)完成上面的列聯(lián)表;
(2)根據(jù)列聯(lián)表的數(shù)據(jù),是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?并說明你的理由.
參考公式與臨界值表:
.
| 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】(1)列聯(lián)表見解析 (2)有,說明見解析
【解析】
(1)根據(jù)題意隨機(jī)抽取1人喜歡游泳的概率為
,喜歡游泳的人數(shù)為
,即可列出列聯(lián)表.
(2)計(jì)算出觀測(cè)值,利用獨(dú)立性檢驗(yàn)的思想即可求解.
解:(1)因?yàn)樵?/span>100人中隨機(jī)抽取1人喜歡游泳的概率為
.所以喜歡游泳的人數(shù)為
,所以
列聯(lián)表如下:
喜歡游泳 | 不喜歡游泳 | 合計(jì) | |
男生 | 40 | 10 | 50 |
女生 | 20 | 30 | 50 |
合計(jì) | 60 | 40 | 100 |
(2)
,所以有99.9%的把握認(rèn)為“喜歡游泳與性別有關(guān)系”.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次53.5公里的自行車個(gè)人賽中,25名參賽手的成績(單位:分鐘)的莖葉圖如圖所示,現(xiàn)將參賽選手按成績由好到差編為1-25號(hào),再用系統(tǒng)抽樣方法從中選取5人.已知選手甲的成績?yōu)?5分鐘,若甲被選取,則被選取的其余4名選手的成績的平均數(shù)為( )
![]()
A. 97 B. 96 C. 95 D. 98
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫(yī)院組織專家統(tǒng)計(jì)了該地區(qū)500名患者新冠病毒潛伏期的相關(guān)信息,數(shù)據(jù)經(jīng)過匯總整理得到如圖所示的頻率分布直方圖(用頻率作為概率).潛伏期不高于平均數(shù)的患者,稱為“短潛伏者”,潛伏期高于平均數(shù)的患者,稱為“長潛伏者”.
![]()
(1)求這500名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),并計(jì)算出這500名患者中“長潛伏者”的人數(shù);
(2)為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否高于平均數(shù)為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述500名患者中抽取300人,得到如下表格.
(i)請(qǐng)將表格補(bǔ)充完整;
短潛伏者 | 長潛伏者 | 合計(jì) | |
60歲及以上 | 90 | ||
60歲以下 | 140 | ||
合計(jì) | 300 |
(ii)研究發(fā)現(xiàn),某藥物對(duì)新冠病毒有一定的抑制作用,現(xiàn)需在樣本中60歲以下的140名患者中按分層抽樣方法抽取7人做I期臨床試驗(yàn),再從選取的7人中隨機(jī)抽取兩人做Ⅱ期臨床試驗(yàn),求兩人中恰有1人為“長潛伏者”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
過點(diǎn)
,且橢圓的離心率為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)斜率為
的直線
交橢圓
于
,
兩點(diǎn),且
.若直線
上存在點(diǎn)P,使得
是以
為頂角的等腰直角三角形,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)
是拋物線
的焦點(diǎn),點(diǎn)
,
在
上,且
.
(1)求
的值;
(2)若直線
經(jīng)過點(diǎn)
且與
交于
,
(異于
)兩點(diǎn),證明:直線
與直線
的斜率之積為常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】太極是中國古代的哲學(xué)術(shù)語,意為派生萬物的本源.太極圖是以黑白兩個(gè)魚形紋組成的圓形圖案,俗稱陰陽魚.太極圖形象化地表達(dá)了陰陽輪轉(zhuǎn),相反相成是萬物生成變化根源的哲理.太極圖形展現(xiàn)了一種互相轉(zhuǎn)化,相對(duì)統(tǒng)一的形式美.按照太極圖的構(gòu)圖方法,在平面直角坐標(biāo)系中,圓
被
的圖象分割為兩個(gè)對(duì)稱的魚形圖案,圖中的兩個(gè)一黑一白的小圓通常稱為“魚眼”,已知小圓的半徑均為
,現(xiàn)在大圓內(nèi)隨機(jī)投放一點(diǎn),則此點(diǎn)投放到“魚眼”部分的概率為( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】以下四個(gè)命題中,正確的題號(hào)是__________.
①函數(shù)的最值一定是極值;
②設(shè)
:實(shí)數(shù)
,
滿足
;
:實(shí)數(shù)
,
滿足
,則
是
的充分不必要條件;
③已知橢圓
:
與雙曲線
:
的焦點(diǎn)重合,
、
分別為
、
的離心率,則
,且
;
④一動(dòng)圓
過定點(diǎn)
,且與已知圓
:
相切,則動(dòng)圓圓心
的軌跡方程是
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市民用水?dāng)M實(shí)行階梯水價(jià),每人用水量中不超過
立方米的部分按4元/立方米收費(fèi),超出
立方米的部分按10元/立方米收費(fèi),從該市隨機(jī)調(diào)查了10000位居民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖:
![]()
(1)如果
為整數(shù),那么根據(jù)此次調(diào)查,為使80%以上居民在該月的用水價(jià)格為4元/立方米,
至少定為多少?
(2)假設(shè)同組中的每個(gè)數(shù)據(jù)用該組區(qū)間的右端點(diǎn)值代替,當(dāng)
時(shí),估計(jì)該市居民該月的人均水費(fèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
與曲線
和
分別交于
兩點(diǎn),點(diǎn)
的坐標(biāo)為
,則
面積的最小值為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com