欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知函數(shù)f(x)=
12x-1
+a是奇函數(shù).(1)求常數(shù)a的值;(2)判斷f(x)的單調(diào)性并給出證明.
分析:(1)函數(shù)f(x)=
1
2x-1
+a是奇函數(shù),可得方程f(x)+f(-x)=0代入函數(shù)解析式,由此方程求出a的值;
(2)由(1)函數(shù)f(x)=
1
2x-1
+
1
2
,由解析式形式知f(x)=
1
2x-1
+
1
2
在(-∞,0)與(0,+∞)上都是減函數(shù),由定義證明即可
解答:解:(1)函數(shù)f(x)=
1
2x-1
+a是奇函數(shù),可得f(x)+f(-x)=0
1
2x-1
+a+
1
2-x-1
+a=0,解得a=
1
2

∴函數(shù)f(x)=
1
2x-1
+
1
2

(2)由(1)得f(x)=
1
2x-1
+
1
2
在(-∞,0)與(0,+∞)上都是減函數(shù),證明如下
任取x1<x2
f(x1)-f(x2)=
1
2x1-1
-
1
2x2-1
=
2x2-2x1
(2x1-1)(2x2-1)

當(dāng)x1,x2∈(0,+∞)時(shí),2x1-1>0,2x2-1>0,2x2-2x2>0,所以
2x2-2x1
(2x1-1)(2x2-1)
>0,
有f(x1)-f(x2)>0
當(dāng)x1,x2∈(-∞,0)時(shí),2x1-1<0,2x2-1<0,2x2-2x1>0,所以
2x2-2x1
(2x1-1)(2x2-1)
>0,
有f(x1)-f(x2)>0
 綜上知,
f(x)=
1
2x-1
+
1
2
在(-∞,0)與(0,+∞)上都是減函數(shù)
點(diǎn)評(píng):本題考查了函數(shù)奇偶性的性質(zhì)以及函數(shù)單調(diào)性的證明方法定義法,解題的關(guān)鍵是理解奇函數(shù)的定義及單調(diào)性的證明方法,本題的重點(diǎn)是單調(diào)性的證明,其中判斷符號(hào)是難點(diǎn)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),則實(shí)數(shù)x的取值范圍是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1,x∈Q
0,x∉Q
,則f[f(π)]=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x
ax
+lnx(a>0)

(1)若函數(shù)f(x)在[1,+∞)上為增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a=1時(shí),求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)當(dāng)a=1時(shí),求證對(duì)任意大于1的正整數(shù)n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,則下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=1+logax(a>0,a≠1),滿足f(9)=3,則f-1(log92)的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案