【題目】已知函數(shù)
的最大值為
(其中
為自然對數(shù)的底數(shù)),
是
的導(dǎo)函數(shù)。
(1)求
的值;
(2)任取兩個不等的正數(shù)
,且
,若存在正數(shù)
,使得
成立。求證:
。
【答案】(1)
.(2)見解析.
【解析】
(1)對函數(shù)求導(dǎo),分情況得到函數(shù)的單調(diào)性,進(jìn)而求得在
處取得最值,進(jìn)而求解;(2)根據(jù)導(dǎo)數(shù)的幾何意義得到
,構(gòu)造函數(shù)
,通過換元將等式右邊的函數(shù)改為
,對此函數(shù)求導(dǎo)得到函數(shù)的單調(diào)性進(jìn)而得證.
(1)由題意得,顯然
,∵
,∴
,
令
,解得
,
①.當(dāng)
時,令
,解得
;令
,解得
,
∴
在
上單調(diào)遞增,在
上單調(diào)遞減,
∴
在
處取得極大值,也是最大值,
∴
,解得
;
②當(dāng)
時,易知與題意不符,故舍去,
綜上所述,
;
(2)由(1)知
,則
,∴
,
∴
,即
,
則![]()
,
設(shè)
,則
,
令
,則
,
∴函數(shù)
在
上單調(diào)遞減,
∴
,即
,又
,
∴
,即
,∴
,
同理可證
,得證。
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
,其中
是自然對數(shù)的底數(shù).
(Ⅰ)
,使得不等式
成立,試求實數(shù)
的取值范圍;
(Ⅱ)若
,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班主任對全班50名學(xué)生學(xué)習(xí)積極性和對待班級工作的態(tài)度進(jìn)行了調(diào)查,統(tǒng)計數(shù)據(jù)如下表所示:
積極參加 班級工作 | 不太主動參加 班級工作 | 合計 | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性一般 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
(1)如果隨機(jī)抽查這個班的一名學(xué)生,那么抽到積極參加班級工作的學(xué)生的概率是多少?抽到不太主動參加班級工作且學(xué)習(xí)積極性一般的學(xué)生的概率是多少?
(2)試運用獨立性檢驗的思想方法能否有99.9%的把握認(rèn)為學(xué)生的學(xué)習(xí)積極性與對待班級工作的態(tài)度有關(guān)系?并說明理由.(參考下表)
P(K2 ≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:
,其中
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,
的最大值為
.
(Ⅰ)求實數(shù)
的值;
(Ⅱ)當(dāng)
時,討論函數(shù)
的單調(diào)性;
(Ⅲ)當(dāng)
時,令
,是否存在區(qū)間
.使得函數(shù)
在區(qū)間
上的值域為
若存在,求實數(shù)
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠的檢驗員為了檢測生產(chǎn)線上生產(chǎn)零件的情況,從產(chǎn)品中隨機(jī)抽取了
個進(jìn)行測量,根據(jù)所測量的數(shù)據(jù)畫出頻率分布直方圖如下:
![]()
如果:尺寸數(shù)據(jù)在
內(nèi)的零件為合格品,頻率作為概率.
(1)從產(chǎn)品中隨機(jī)抽取
件,合格品的個數(shù)為
,求
的分布列與期望:
(2)為了提高產(chǎn)品合格率,現(xiàn)提出
,
兩種不同的改進(jìn)方案進(jìn)行試驗,若按
方案進(jìn)行試驗后,隨機(jī)抽取
件產(chǎn)品,不合格個數(shù)的期望是
:若按
方案試驗后,抽取
件產(chǎn)品,不合格個數(shù)的期望是
,你會選擇哪個改進(jìn)方案?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱錐
中,底面
是邊長為
的正方形,
是正三角形,CD平面PAD,E,F,G,O分別是PC,PD,BC,AD 的中點.
![]()
(Ⅰ)求證:PO平面
;
(Ⅱ)求平面EFG與平面
所成銳二面角的大;
(Ⅲ)線段
上是否存在點
,使得直線
與平面
所成角為
,若存在,求線段
的長度;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自2017年7月27日上映以來,《戰(zhàn)狼2》的票房一路高歌猛進(jìn),并不斷刷新華語電影票房紀(jì)錄.繼8月25日官方宣布沖破53億票房之后,根據(jù)外媒Worldwide Box Office給出的2017年周末全球票房最新排名,《戰(zhàn)狼2》以8.151億美元(約54.18億元)的成績成功殺入前五.通過收集并整理了《戰(zhàn)狼2》上映前兩周的票房(單位:億元)數(shù)據(jù),繪制出下面的條形圖.根據(jù)該條形圖,下列結(jié)論錯誤的是( )
![]()
A.在《戰(zhàn)狼2》上映前兩周中,前四天票房逐日遞增
B.在《戰(zhàn)狼2》上映前兩周中,日票房超過2億元的共有12天
C.在《戰(zhàn)狼2》上映前兩周中,8月5日,8月6日達(dá)到了票房的高峰期
D.在《戰(zhàn)狼2》上映前兩周中,前五日的票房平均數(shù)高于后五日的票房平均數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知![]()
(1)求
的軌跡![]()
(2)過軌跡
上任意一點
作圓
的切線
,設(shè)直線
的斜率分別是
,試問在三個斜率都存在且不為0的條件下,
是否是定值,請說明理由,并加以證明.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com