(本題滿分14分)
在等差數(shù)列
中,已知
。
(Ⅰ)求通項
和前n項和
;
(Ⅱ)求
的最大值以及取得最大值時的序號
的值;
(Ⅲ)求數(shù)列
的前n項和
.
(Ⅰ)![]()
(Ⅱ)
或
時![]()
(Ⅲ)
【解析】
試題分析:(Ⅰ)設(shè)等差數(shù)列
的公差為
,
因為
,所以
,所以
…2分
又因為
所以
…4分
(Ⅱ)![]()
又因為
,所以
或
時,
…9分
(Ⅲ)
令
,也就是
,
所以當(dāng)
時,
=![]()
當(dāng)
時,
=![]()
![]()
綜上所述,數(shù)列
的前n項和
.
…14分
考點:本小題主要考查等差數(shù)列的通項公式、前
項和的計算,和前
項和的最值的求法和帶絕對值的數(shù)列的前
項和的計算,考查了學(xué)生的運算求解能力和分類討論思想的應(yīng)用.
點評:本題第(Ⅱ)問也可以令
得
,所以數(shù)列前7項或前8項的和最大,這是從數(shù)列的項的觀點來求解,當(dāng)然也可以從二次函數(shù)的觀點來求解.第(Ⅲ)問中數(shù)列帶絕對值,解題的關(guān)鍵是分清從第幾項開始數(shù)列的項開始變號.
科目:高中數(shù)學(xué) 來源: 題型:
| π |
| 3 |
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本題滿分14分)如圖,四邊形ABCD為矩形,AD⊥平面ABE,AE=EB=BC=2,
為
上的點,且BF⊥平面ACE.
(1)求證:AE⊥BE;(2)求三棱錐D-AEC的體積;(3)設(shè)M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三上學(xué)期期中考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若A
B=[0,3],求實數(shù)m的值
(Ⅱ)若A
CRB,求實數(shù)m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三上學(xué)期第三次月考理科數(shù)學(xué)卷 題型:解答題
(本題滿分14分)
已知點
是⊙
:
上的任意一點,過
作
垂直
軸于
,動點
滿足
。
(1)求動點
的軌跡方程;
(2)已知點
,在動點
的軌跡上是否存在兩個不重合的兩點
、
,使
(O是坐標原點),若存在,求出直線
的方程,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆江西省高一第二學(xué)期入學(xué)考試數(shù)學(xué) 題型:解答題
(本題滿分14分)已知函數(shù)
.
(1)求函數(shù)
的定義域;
(2)判斷
的奇偶性;
(3)方程
是否有根?如果有根
,請求出一個長度為
的區(qū)間
,使![]()
![]()
;如果沒有,請說明理由?(注:區(qū)間的長度為
).
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com