分析 由條件利用正弦函數(shù)的定義域和值域,正弦函數(shù)的單調(diào)性,得出結(jié)論.
解答 解:(1)對于函數(shù)f(x)=$\sqrt{2}$sin(4x+$\frac{π}{4}$),
它的最大值為$\sqrt{2}$,最小值為-$\sqrt{2}$;
(2)令2kπ-$\frac{π}{2}$≤4x+$\frac{π}{4}$≤2kπ+$\frac{π}{2}$,求得$\frac{kπ}{2}$-$\frac{3π}{16}$≤x≤$\frac{kπ}{2}$+$\frac{π}{16}$,
故函數(shù)的增區(qū)間為[得$\frac{kπ}{2}$-$\frac{3π}{16}$,$\frac{kπ}{2}$+$\frac{π}{16}$],k∈Z.
(3)在$[-\frac{π}{8},\frac{π}{8}]$上,4x+$\frac{π}{4}$∈[-$\frac{π}{4}$,$\frac{3π}{4}$],sin(4x+$\frac{π}{4}$)∈[-$\frac{\sqrt{2}}{2}$,1],
∴f(x)∈[-1,2],故f(x)的最大值為$\sqrt{2}$,最小值為-1.
點(diǎn)評 本題主要考查正弦函數(shù)的定義域和值域,正弦函數(shù)的單調(diào)性,屬于基礎(chǔ)題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 8或9 | B. | 9或10 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | tanα | B. | sinα | C. | cosα | D. | sinαcosα |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 4 | B. | 6 | C. | -4 | D. | -6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com