欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.設(shè)等比數(shù)列{an}的前6項(xiàng)和S6=6,且1-$\frac{{a}_{2}}{2}$為a1,a3的等差中項(xiàng),則a7+a8+a9=( 。
A.-2B.8C.10D.14

分析 1-$\frac{{a}_{2}}{2}$為a1,a3的等差中項(xiàng),可得2(1-$\frac{{a}_{2}}{2}$)=a1+a3,設(shè)等比數(shù)列{an}的公比為q,則q≠1.2(1-$\frac{{a}_{1}q}{2}$)=a1+${a}_{1}{q}^{2}$,又前6項(xiàng)和S6=6,可得$\frac{{a}_{1}({q}^{6}-1)}{q-1}$=6,聯(lián)立解得:q3=2.即可得出.

解答 解:∵1-$\frac{{a}_{2}}{2}$為a1,a3的等差中項(xiàng),
∴2(1-$\frac{{a}_{2}}{2}$)=a1+a3,
設(shè)等比數(shù)列{an}的公比為q,則q≠1.
∴2(1-$\frac{{a}_{1}q}{2}$)=a1+${a}_{1}{q}^{2}$,
又前6項(xiàng)和S6=6,∴$\frac{{a}_{1}({q}^{6}-1)}{q-1}$=6,
聯(lián)立解得:q3=2.
∴a1=2(q-1).
∴a7+a8+a9=${a}_{1}{q}^{6}$(1+q+q2)=2(q-1)q6(1+q+q2)=2q6(q3-1)=2×22(2-1)=8.
故選:B.

點(diǎn)評(píng) 本題考查了等差數(shù)列與等比數(shù)列的通項(xiàng)公式及其前n項(xiàng)和公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.cos160°sin10°-sin20°cos10°( 。
A.-$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.函數(shù)y=3sinx+2的最小正周期是(  )
A.1B.2C.πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知點(diǎn)P(x,y)的坐標(biāo)滿足條件$\left\{\begin{array}{l}{x≤1}\\{y≤2}\\{2x+y-2>0}\end{array}\right.$,那么(x+1)2+y2的取值范圍為($\frac{16}{5}$,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x<0時(shí),f(x)=3x,則$f(sin\frac{13π}{6})$=$-\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.求f(x)=a•2x-4x(a∈R)在[0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=x2-a|x-1|,其中a∈R.
(1)若函數(shù)g(x)=f(x)-$\frac{3}{4}$有四個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍:
(2)設(shè)函數(shù)f(x)在區(qū)間[-2,2]上的最大值為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤1}\\{(x-1)^{2}+a,x>1}\end{array}\right.$,若關(guān)于x的函數(shù)g(x)=xf(x)-$\frac{1}{2}$只有一個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是[$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=-2-\frac{\sqrt{3}t}{2}}\\{y=\frac{1}{2}t}\end{array}\right.$曲線C2的極坐標(biāo)方程為ρ=2$\sqrt{2}$cos(θ-$\frac{π}{4}$),以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為x軸正半軸建立平面直角坐標(biāo)系.
(1)求曲線C2的直角坐標(biāo)方程;
(2)求曲線C2上的動(dòng)點(diǎn)M到直線C1的距離的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案