【題目】如圖,在四棱錐
中,底面
是矩形,側(cè)棱
底面
,且
,過棱
的中點(diǎn)
,作
交
于點(diǎn)
.
![]()
(1)證明:
平面
;
(2)若面
與面
所成二面角的大小為
,求
與面
所成角的正弦值.
【答案】(1)見解析(2)![]()
【解析】
(1)連接
交
于
,則
是
的中點(diǎn),連接
,證明
,
平面
即得證;(2)如圖以
為原點(diǎn),
方向分別為
軸,
軸,
軸正半軸建立空間直角坐標(biāo)系.設(shè)
,根據(jù)面
與面
所成二面角的大小為
求出
,再求出
與面
所成角的正弦值.
(1)證明:連接
交
于
,則
是
的中點(diǎn),連接
,
則
是
的中位線,所以
,
有因?yàn)?/span>
,
所以
平面
.
(2)如圖以
為原點(diǎn),
方向分別為
軸,
軸,
軸正半軸建立空間直角坐標(biāo)系.設(shè)
,則
![]()
,
,
,
,
,
,設(shè)
,則
,![]()
又
,即
,解得
①
設(shè)
是平面
的一個(gè)法向量,則
即
,方程的一組解為
,
顯然
是面
的一個(gè)法向量,依題意有
,得
,
結(jié)合①式得
.
因?yàn)?/span>
底面
,所以
是
與面
所成的角,
所以
.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知
中,
,點(diǎn)
平面
,點(diǎn)
在平面
的同側(cè),且
在平面
上的射影分別為
,
.
![]()
(Ⅰ)求證:平面
平面
;
(Ⅱ)若
是
中點(diǎn),求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線
的參數(shù)方程是
(
是參數(shù)),以坐標(biāo)原點(diǎn)為原點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)判斷直線
與曲線
的位置關(guān)系;
(2)過直線
上的點(diǎn)作曲線
的切線,求切線長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中無理數(shù)
.
(Ⅰ)若函數(shù)
有兩個(gè)極值點(diǎn),求
的取值范圍;
(Ⅱ)若函數(shù)
的極值點(diǎn)有三個(gè),最小的記為
,最大的記為
,若
的最大值為
,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,直線l:
,P為直線l上一點(diǎn),且點(diǎn)P在極軸上方
以OP為一邊作正三角形
逆時(shí)針方向
,且
面積為
.
求Q點(diǎn)的極坐標(biāo);
求
外接圓的極坐標(biāo)方程,并判斷直線l與
外接圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
過點(diǎn)
,過坐標(biāo)原點(diǎn)
作兩條互相垂直的射線與橢圓
分別交于
,
兩點(diǎn).
(1)證明:當(dāng)
取得最小值時(shí),橢圓
的離心率為
.
(2)若橢圓
的焦距為2,是否存在定圓與直線
總相切?若存在,求定圓的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大提出,堅(jiān)決打贏脫貧攻堅(jiān)戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅(jiān)持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機(jī)摘下了100個(gè)蜜柚進(jìn)行測重,其質(zhì)量分別在
,
,
,
,
,
(單位:克)中,其頻率分布直方圖如圖所示.
![]()
(1)按分層抽樣的方法從質(zhì)量落在
,
的蜜柚中抽取5個(gè),再從這5個(gè)蜜柚中隨機(jī)抽取2個(gè),求這2個(gè)蜜柚質(zhì)量均小于2000克的概率;
(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個(gè)蜜柚等待出售,某電商提出兩種收購方案:
A. 所有蜜柚均以40元/千克收購;
B. 低于2250克的蜜柚以60元/個(gè)收購,高于或等于2250克的以80元/個(gè)收購.
請你通過計(jì)算為該村選擇收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,以
為極點(diǎn),
軸的正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
;直線
的參數(shù)方程為
(
為參數(shù)),直線
與曲線
分別交于
,
兩點(diǎn).
(1)寫出曲線
的直角坐標(biāo)方程和直線
的普通方程;
(2)若點(diǎn)
的極坐標(biāo)為
,
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex
(x﹣a)2+4.
(1)若f(x)在(﹣∞,+∞)上單調(diào)遞增,求a的取值范圍;
(2)若x≥0,不等式f(x)≥0恒成立,求a的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com