欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

15.設(shè)集合M={-2,2},N={x|$\frac{1}{x}$<2},則下列結(jié)論正確的是( 。
A.N⊆MB.M⊆NC.N∩M={2}D.N∪M=R

分析 判斷M中的元素是否符合集合N的條件即可得出結(jié)論.

解答 解:∵$\frac{1}{-2}$<2,$\frac{1}{2}<2$,
∴-2∈N,2∈N,
∴M⊆N.
故選B.

點(diǎn)評(píng) 本題考查了集合的包含關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)f(x)=$\frac{6x}{{1+{x^2}}}$在區(qū)間[0,3]的最大值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.在△ABC中,已知b=2a,B=30°,則cosA=$\frac{{\sqrt{15}}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若f(a+b)=f(a)•f(b),且f(1)=2,則$\frac{f(2)}{f(1)}$+$\frac{f(3)}{f(2)}$+$\frac{f(4)}{f(3)}$+…+$\frac{f(2017)}{f(2016)}$=4032.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=$\frac{a}{3}{x^3}$+$\frac{1}{2}$(1-a2)x2-ax,其中a∈R.
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為8x+y-2=0,求a的值;
(2)當(dāng)a≠0時(shí),求函數(shù)f(x)(x>0)的單調(diào)區(qū)間與極值;
(3)若a=1,存在實(shí)數(shù)m,使得方程f(x)=m恰好有三個(gè)不同的解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某互聯(lián)網(wǎng)理財(cái)平臺(tái)為增加平臺(tái)活躍度決定舉行邀請好友拿獎(jiǎng)勵(lì)活動(dòng),規(guī)則是每邀請一位好友在該平臺(tái)注冊,并購買至少1萬元的12月定期,邀請人可獲得現(xiàn)金及紅包獎(jiǎng)勵(lì),現(xiàn)金獎(jiǎng)勵(lì)為被邀請人理財(cái)金額的1%,且每邀請一位最高現(xiàn)金獎(jiǎng)勵(lì)為300元,紅包獎(jiǎng)勵(lì)為每邀請一位獎(jiǎng)勵(lì)50元.假設(shè)甲邀請到乙、丙兩人,且乙、丙兩人同意在該平臺(tái)注冊,并進(jìn)行理財(cái),乙、丙兩人分別購買1萬元、2萬元、3萬元的12月定期的概率如表:
理財(cái)金額1萬元2萬元3萬元
乙理財(cái)相應(yīng)金額的概率$\frac{1}{3}$$\frac{1}{3}$$\frac{1}{3}$
丙理財(cái)相應(yīng)金額的概率$\frac{1}{2}$$\frac{1}{3}$$\frac{1}{6}$
(1)求乙、丙理財(cái)金額之和不少于5萬元的概率;
(2)若甲獲得獎(jiǎng)勵(lì)為X元,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知m∈R,復(fù)數(shù)z=$\frac{m(m-2)}{m-1}$+(m2+2m-3)i,求分別滿足下列條件的m的值.
(1)z∈R;               
(2)z是純虛數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.有三個(gè)不同的信箱,今有四封不同的信欲投其中,則不同的投法有81種.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.把函數(shù)f(x)=cos2x-sin2x的圖象向右平移φ(φ>0)個(gè)單位后,恰好與原圖象重合,則符合題意的φ的值可以為( 。
A.$\frac{π}{2}$B.$\frac{3π}{4}$C.πD.$\frac{3π}{2}$

查看答案和解析>>

同步練習(xí)冊答案