分析 (1)求出函數(shù)f(x)的對稱軸,得到函數(shù)的單調(diào)區(qū)間即可;
(2)根據(jù)函數(shù)的單調(diào)性求出函數(shù)f(x)的最大值和最小值即可;
(3)問題轉(zhuǎn)化為m≤-f(x)的最小值,從而求出m的范圍即可.
解答 解:(1)f(x)=x2-2x-3,x∈[-2,5].
∴f(x)=(x-1)2-4,x∈[-2,5],
對稱軸x=1,
f(x)在[-2,1]遞減,在(1,5]遞增;
(2)由(1)得:
f(x)的最小值是f(1)=-4,
f(x)的最大值是f(5)=12;
(3)若m+f(x)≤0恒成立,
則m≤-f(x)的最小值,
故m≤-12.
點評 本題考查了二次函數(shù)的性質(zhì),考查函數(shù)的單調(diào)性、最值問題,是一道基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $(-3+\sqrt{17},+∞)$ | B. | $(3+\sqrt{17},+∞)$ | C. | $(-3+\sqrt{17},3+\sqrt{17})$ | D. | $(0,-3+\sqrt{17})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com