分析 由題意和三視圖知,需要從對(duì)應(yīng)的長(zhǎng)方體中確定三棱錐,根據(jù)三視圖的數(shù)據(jù)和幾何體的垂直關(guān)系,求出四面體四個(gè)面的面積,再確定出它們的最大值.
解答
解:將該幾何體放入在長(zhǎng)方體中,且長(zhǎng)、寬、高為4、3、4,
由三視圖可知該三棱錐為B-A1D1C1,
由三視圖可得,A1D1=CC1=4、D1C1=3,
所以BA1=A1C1=5,BC1=$\sqrt{{4}^{2}+{4}^{2}}$=4$\sqrt{2}$,
則三角形BA1C1的面積S=$\frac{1}{2}$×BC1×h=$\frac{1}{2}$×4$\sqrt{2}$×$\sqrt{{5}^{2}-(2\sqrt{2})^{2}}$=2$\sqrt{34}$,
因?yàn)锳1D1⊥平面ABA1B1,所以A1D1⊥A1B,
則三角形BA1D1的面積S=$\frac{1}{2}$×BA1×A1D1=$\frac{1}{2}$×4×5=10,
同理可得,三角形BD1C1的面積S=$\frac{1}{2}$×BC1×D1C1=$\frac{1}{2}$×3×4$\sqrt{2}$=6$\sqrt{2}$,
又三角形A1D1C1的面積S=$\frac{1}{2}$×D1C1×A1D1=$\frac{1}{2}$×4×3=6,
所以最大的面為A1BC1,且面積為2$\sqrt{34}$,
故答案為:2$\sqrt{34}$.
點(diǎn)評(píng) 本題考查三視圖與幾何體的直觀圖的關(guān)系,幾何體的表面積以及體積的求法,考查計(jì)算能力
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com