分析:利用導(dǎo)數(shù)的運算法則得出f′(x),分a=0,a<0,
0<a<,a=
討論起單調(diào)性.當(dāng)a=0時,容易得出單調(diào)性;當(dāng)a=
,a<0,
0<a<時,分別解出f′(x)>0與f′(x)<0的區(qū)間即可得出單調(diào)區(qū)間.
解答:解:
f′(x)=-a-=-
=-
(x>0),
令g(x)=ax
2-x+1-a,
①當(dāng)a=0時,g(x)=-x+1,當(dāng)x∈(0,1)時,g(x)>0,f′(x)<0,函數(shù)f(x)單調(diào)遞減;
當(dāng)x∈(1,+∞)時,g(x)<0,f′(x)>0,函數(shù)f(x)單調(diào)遞增;
②當(dāng)0<a<
時,由f′(x)=0,x
1=1,x
2=
-1.此時
-1>1>0,
列表如下:

由表格可知:函數(shù)f(x)在區(qū)間(0,1)和
(-1,+∞)上單調(diào)遞減,在區(qū)間
(1,-1)上單調(diào)遞增;
③當(dāng)a=
時,x
1=x
2,此時f′(x)<0,函數(shù)f(x)在(0,+∞)單調(diào)遞減;
④當(dāng)a<0時,由于
-1<0,則函數(shù)f(x)在(0,1)上單調(diào)遞減;在(1,+∞)上單調(diào)遞增.
綜上:當(dāng)a≤0時,函數(shù)f(x)在(0,1)上單調(diào)遞減;在(1,+∞)上單調(diào)遞增.
當(dāng)a=
時,函數(shù)f(x)在(0,+∞)上單調(diào)遞減.
當(dāng)
0<a<時,函數(shù)f(x)在區(qū)間(0,1)和
(-1,+∞)上單調(diào)遞減,在區(qū)間
(1,-1)上單調(diào)遞增.