【題目】已知關(guān)于x的不等式(ax﹣a2﹣4)(x﹣4)>0的解集為A,且A中共含有n個(gè)整數(shù),則當(dāng)n最小時(shí)實(shí)數(shù)a的值為_____.
【答案】-2
【解析】
討論
三種情況,a<0時(shí),根據(jù)均值不等式得到a
(﹣a
)≤﹣2
4,計(jì)算等號(hào)成立的條件得到答案.
已知關(guān)于x的不等式(ax﹣a2﹣4)(x﹣4)>0,
①a<0時(shí),[x﹣(a
)](x﹣4)<0,其中a
0,
故解集為(a
,4),
由于a
(﹣a
)≤﹣2
4,
當(dāng)且僅當(dāng)﹣a
,即a=﹣2時(shí)取等號(hào),
∴a
的最大值為﹣4,當(dāng)且僅當(dāng)a
4時(shí),A中共含有最少個(gè)整數(shù),此時(shí)實(shí)數(shù)a的值為﹣2;
②a=0時(shí),﹣4(x﹣4)>0,解集為(﹣∞,4),整數(shù)解有無(wú)窮多,故a=0不符合條件;
③a>0時(shí),[x﹣(a
)](x﹣4)>0,其中a
4,
∴故解集為(﹣∞,4)∪(a
,+∞),整數(shù)解有無(wú)窮多,故a>0不符合條件;
綜上所述,a=﹣2.
故答案為:﹣2.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】細(xì)葉青萎藤又稱(chēng)海風(fēng)藤,俗稱(chēng)穿山龍,屬木質(zhì)藤本植物,是我國(guó)常用大宗中藥材,以根莖入藥,具有舒筋活血、祛風(fēng)止痛、止咳平喘、強(qiáng)身健體等醫(yī)療保健功效.通過(guò)研究光照、溫度和沙藏時(shí)間對(duì)細(xì)葉青萎藤種子萌發(fā)的影響,結(jié)果表明,細(xì)葉青萎藤種子發(fā)芽率和發(fā)芽指數(shù)均隨著沙藏時(shí)間的延長(zhǎng)而提高.
下表給岀了2019年種植的一批試驗(yàn)細(xì)葉青萎藤種子6組不同沙藏時(shí)間發(fā)芽的粒數(shù).經(jīng)計(jì)算:
沙藏時(shí)間 | 22 | 23 | 25 | 27 | 29 | 30 |
發(fā)芽數(shù) | 8 | 11 | 20 | 30 | 59 | 70 |
,
,
,
.其中
,
分別為試驗(yàn)數(shù)據(jù)中的天數(shù)和發(fā)芽粒數(shù),
.
(1)求
關(guān)于
的回歸方程
(
和
都精確到0.01);
(2)在題中的6組發(fā)芽的粒數(shù)不大于30的組數(shù)中,任意抽岀兩組,則這兩組數(shù)據(jù)中至少有一組滿(mǎn)足“
”的概率是多少?
附:對(duì)于一組數(shù)據(jù)
,
,…,
,其回歸直線(xiàn)
的斜率和截距的最小二乘估計(jì)分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系
中,已知橢圓
(
)的上頂點(diǎn)為
,圓
經(jīng)過(guò)點(diǎn)
.
![]()
(1)求橢圓
的方程;
(2)過(guò)點(diǎn)
作直線(xiàn)
交橢圓
于
,
兩點(diǎn),過(guò)點(diǎn)
作直線(xiàn)
的垂線(xiàn)
交圓
于另一點(diǎn)
.若△PQN的面積為3,求直線(xiàn)
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查公司員工的飲食習(xí)慣與月收入之間的關(guān)系,隨機(jī)抽取了30名員工,并制作了這30人的月平均收入的頻率分布直方圖和飲食指數(shù)表(說(shuō)明:圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類(lèi)為主).其中月收入4000元以上員工中有11人飲食指數(shù)高于70.
![]()
20 | 21 | 21 | 25 | 32 | 33 |
36 | 37 | 42 | 43 | 44 | 45 |
45 | 58 | 58 | 59 | 61 | 66 |
74 | 75 | 76 | 77 | 77 | 78 |
78 | 82 | 83 | 85 | 86 | 90 |
(1)是否有
的把握認(rèn)為飲食習(xí)慣與月收入有關(guān)系?若有,請(qǐng)說(shuō)明理由,若沒(méi)有,說(shuō)明理由并分析原因;
(2)從飲食指數(shù)在
內(nèi)的員工中任選2人,求他們的飲食指數(shù)均在
內(nèi)的概率;
(3)經(jīng)調(diào)查某地若干戶(hù)家庭的年收入
(萬(wàn)元)和年飲支出
(萬(wàn)元)具有線(xiàn)性相關(guān)關(guān)系,并得到
關(guān)于
的回歸直線(xiàn)方程:
.若一個(gè)員工的月收入恰好為這30人的月平均收入,估計(jì)該人的年飲食支出費(fèi)用.
附:
,
.
| 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二面角α﹣l﹣β為60°,在其內(nèi)部取點(diǎn)A,在半平面α,β內(nèi)分別取點(diǎn)B,C.若點(diǎn)A到棱l的距離為1,則△ABC的周長(zhǎng)的最小值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩座建筑物AB,CD的底部都在同一個(gè)水平面上,且均與水平面垂直,它們的高度分別是10m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=60°.
![]()
(1)求BC的長(zhǎng)度;
(2)在線(xiàn)段BC上取一點(diǎn)P(點(diǎn)P與點(diǎn)B,C不重合),從點(diǎn)P看這兩座建筑物的視角分別為∠APB=α,∠DPC=β,問(wèn)點(diǎn)P在何處時(shí),α+β最?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一直徑為8米的半圓形空地,現(xiàn)計(jì)劃種植甲、乙兩種水果,已知單位面積種植甲水果的經(jīng)濟(jì)價(jià)值是種植乙水果經(jīng)濟(jì)價(jià)值的5倍,但種植甲水果需要有輔助光照.半圓周上的
處恰有一可旋轉(zhuǎn)光源滿(mǎn)足甲水果生長(zhǎng)的需要,該光源照射范圍是
,點(diǎn)
在直徑
上,且
.
![]()
(1)若
米,求
的長(zhǎng);
(2)設(shè)
, 求該空地產(chǎn)生最大經(jīng)濟(jì)價(jià)值時(shí)種植甲種水果的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
,其中
.
(1)求函數(shù)
的單調(diào)區(qū)間;
(2)若函數(shù)
存在兩個(gè)極值點(diǎn)
,
,且
,證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年是中國(guó)改革開(kāi)放的第40周年,為了充分認(rèn)識(shí)新形勢(shì)下改革開(kāi)放的時(shí)代性,某地的民調(diào)機(jī)構(gòu)隨機(jī)選取了該地的100名市民進(jìn)行調(diào)查,將他們的年齡分成6段:
,并繪制了如圖所示的頻率分布直方圖.
![]()
(1)現(xiàn)從年齡在
內(nèi)的人員中按分層抽樣的方法抽取8人,再?gòu)倪@8人中隨機(jī)抽取3人進(jìn)行座談,用
表示年齡在
內(nèi)的人數(shù),求
的分布列和數(shù)學(xué)期望;
(2)若用樣本的頻率代替概率,用隨機(jī)抽樣的方法從該地抽取20名市民進(jìn)行調(diào)查,其中有
名市民的年齡在
的概率為
.當(dāng)
最大時(shí),求
的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com