【題目】某校要通過選拔賽選取一名同學(xué)參加市級(jí)乒乓球單打比賽,選拔賽采取淘汰制,敗者直接出局,F(xiàn)有兩種賽制方案:三局兩勝制和五局三勝制。問兩選手對(duì)決時(shí),選擇何種賽制更有利于選拔出實(shí)力最強(qiáng)的選手,并說明理由。(設(shè)各局勝負(fù)相互獨(dú)立,各選手水平互不相同。)
【答案】五局三勝更有利于選拔出實(shí)力最強(qiáng)的選手。
【解析】
分別求出三局兩勝制甲勝的概率和五局三勝制甲勝的概率,由此能得到采用“五局三勝制”對(duì)甲有利.
甲乙兩人對(duì)決,若甲更強(qiáng),則其勝率
。采用三局兩勝制時(shí),若甲最終獲勝,其勝局情況是:“甲甲”或“乙甲甲”或“甲乙甲”.而這三種結(jié)局互不相容,于是由獨(dú)立性得甲最終獲勝的概率為:
.
采用五局三勝制,若甲最終獲勝,至少需比賽3局,且最后一局必須是甲勝,而前面甲需勝二局,由獨(dú)立性得五局三勝制下甲最終獲勝的概率為:
.
而
.
因?yàn)?/span>
,所以
,即五局三勝的條件下甲最終獲勝的可能更大。所以五局三勝制更能選拔出最強(qiáng)的選手。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列條件的橢圓或雙曲線的標(biāo)準(zhǔn)方程:
(1)橢圓的焦點(diǎn)在
軸上,焦距為4,且經(jīng)過點(diǎn)
;
(2)雙曲線的焦點(diǎn)在
軸上,右焦點(diǎn)為
,過
作重直于
軸的直線交雙曲線于
,
兩點(diǎn),且
,離心率為
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=a(x2﹣1)﹣lnx.
(1)若y=f(x)在x=2處的切線與y垂直,求a的值;
(2)若f(x)≥0在[1,+∞)上恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面上,給定非零向量
,對(duì)任意向量
,定義
.
(1)若
,
,求
;
(2)若
,證明:若位置向量
的終點(diǎn)在直線
上,則位置向量
的終點(diǎn)也在一條直線上;
(3)已知存在單位向量
,當(dāng)位置向量
的終點(diǎn)在拋物線
:
上時(shí),位置向量
終點(diǎn)總在拋物線
:
上,曲線
和
關(guān)于直線
對(duì)稱,問直線
與向量
滿足什么關(guān)系?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點(diǎn)M,N均在直線x=5上.圓弧C1的圓心是坐標(biāo)原點(diǎn)O,半徑為13;圓弧C2過點(diǎn)A(29,0).
![]()
(1)求圓弧C2的方程.
(2)曲線C上是否存在點(diǎn)P,滿足PA=
PO?若存在,指出有幾個(gè)這樣的點(diǎn);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓方程為
,它的一個(gè)頂點(diǎn)為
,離心率
.
(1)求橢圓的方程;
(2)設(shè)直線
與橢圓交于
,
兩點(diǎn),坐標(biāo)原點(diǎn)
到直線
的距離為
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)當(dāng)
時(shí),直線
與
相切,求
的值;
(2)若函數(shù)
在
內(nèi)有且只有一個(gè)零點(diǎn),求此時(shí)函數(shù)
的單調(diào)區(qū)間;
(3)當(dāng)
時(shí),若函數(shù)
在
上的最大值和最小值的和為1,求實(shí)數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線
的左焦點(diǎn)為
,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)P為雙曲線右支上的動(dòng)點(diǎn),且△APF1周長的最小值為6,則雙曲線的離心率為( 。
A.
B.
C.2D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
過點(diǎn)
,且橢圓的離心率
.
(1)求橢圓的標(biāo)淮方程;
(2)直線
過點(diǎn)
且與橢圓相交于
、
兩點(diǎn),橢圓的右頂點(diǎn)為
,試判斷
是否能為直角.若能為直角,求出直線
的方程,若不行,請(qǐng)說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com