(1)∵
f′1(x)=則當(dāng)m>0時,在(-2,2)上函數(shù)f
1(x)單調(diào)遞增;在(-∞,-2)及(2,+∞)上單調(diào)遞減.
當(dāng)m<0時,在(-2,2)上函數(shù)f
1(x)單調(diào)遞減;在(-∞,-2)及(2,+∞)上單調(diào)遞增;
(2)由m<-2,-2≤x≤2,得x-m>0,則
f2(x)=()x-m=2m•()x,
∴
f(x)=f1(x)+f2(x)=+2m•()x由(1)知,當(dāng)m<-2,-2≤x≤2時,f
1(x)在[-2,2]上是減函數(shù),而
f2(x)=2m•()x在[-2,2]上也是減函數(shù),
∴當(dāng)x=-2時,f(x)取最大值4•
2m-=2m+2-,當(dāng)x=2時,f(x)取最小值
2m-2+;
(3)當(dāng)m≥2時,
g(x1)=f1(x1)=,
由(1)知,此時函數(shù)g(x
1)在[2,+∞)上是減函數(shù),
從而g(x
1)∈(0,f
1(2)),即
g(x1)∈(0,]若m≥2,由于x
2<2,
則
g(x2)=f2(x2)=()|x2-m|=()|m-x2|=()m•2x2,
∴g(x
2)在(-∞,2)上單調(diào)遞增,
從而g(x
2)∈(0,f
2(2))
即
g(x2)∈(0,()m-2)要使g(x
1)=g(x
2)成立,
只需
<()m-2,即
-()m-2<0成立即可
由函數(shù)
h(m)=-()m-2在[2,+∞)上單調(diào)遞增,
且h(4)=0,得m<4,
所以2≤m<4