分析 本題(1)可以將向量$\overrightarrow{α}=[\begin{array}{l}{3}\\{8}\end{array}]$轉(zhuǎn)化為向量e1=$[\begin{array}{l}{6}\\{5}\end{array}]$、向量e2=$[\begin{array}{l}{1}\\{-1}\end{array}]$的線性組合,再利用特征值的計(jì)算規(guī)律,求出算${M}^{3}\overrightarrow{α}$,${M}^{50}\overrightarrow{α}$;(2)類似(1)的計(jì)算,計(jì)算 ${M}^{5}\overrightarrow{β}$,${M}^{100}\overrightarrow{β}$,得到本題結(jié)論.
解答 解:(1)∵矩陣M=$[\begin{array}{l}{3}&{6}\\{5}&{2}\end{array}]$有屬于特征值λ1=8的一個(gè)特征向量e1=$[\begin{array}{l}{6}\\{5}\end{array}]$,及屬于特征值λ2=-3的一個(gè)特征向量e2=$[\begin{array}{l}{1}\\{-1}\end{array}]$,
∴$[\begin{array}{l}{3}&{6}\\{5}&{2}\end{array}]$×$[\begin{array}{l}{6}\\{5}\end{array}]$=8×$[\begin{array}{l}{6}\\{5}\end{array}]$,$[\begin{array}{l}{3}&{6}\\{5}&{2}\end{array}]$×$[\begin{array}{l}{1}\\{-1}\end{array}]$=-3×$[\begin{array}{l}{1}\\{-1}\end{array}]$.
∵$[\begin{array}{l}{3}\\{8}\end{array}]$=$[\begin{array}{l}{6}\\{5}\end{array}]$-3×$[\begin{array}{l}{1}\\{-1}\end{array}]$,
∴${M}^{3}\overrightarrow{α}$=M3($[\begin{array}{l}{6}\\{5}\end{array}]$-3×$[\begin{array}{l}{1}\\{-1}\end{array}]$)=M3×$[\begin{array}{l}{6}\\{5}\end{array}]$-3×M3×$[\begin{array}{l}{1}\\{-1}\end{array}]$=83×$[\begin{array}{l}{6}\\{5}\end{array}]$-3×(-3)3×$[\begin{array}{l}{1}\\{-1}\end{array}]$=$[\begin{array}{l}{6×{8}^{3}+{3}^{4}}\\{5×{8}^{3}-{3}^{4}}\end{array}]$=$[\begin{array}{l}{3153}\\{2479}\end{array}]$.
${M}^{50}\overrightarrow{α}$=M50($[\begin{array}{l}{6}\\{5}\end{array}]$-3×$[\begin{array}{l}{1}\\{-1}\end{array}]$)=M50×$[\begin{array}{l}{6}\\{5}\end{array}]$-3×M50×$[\begin{array}{l}{1}\\{-1}\end{array}]$=850×$[\begin{array}{l}{6}\\{5}\end{array}]$-3×(-3)50×$[\begin{array}{l}{1}\\{-1}\end{array}]$=$[\begin{array}{l}{6×{8}^{50}+(-3)^{51}}\\{5×{8}^{50}-(-3)^{51}}\end{array}]$.
(2)∵$[\begin{array}{l}{8}\\{3}\end{array}]$=$[\begin{array}{l}{6}\\{5}\end{array}]$+2×$[\begin{array}{l}{1}\\{-1}\end{array}]$,
∴${M}^{5}\overrightarrow{β}$=M5($[\begin{array}{l}{6}\\{5}\end{array}]$+2×$[\begin{array}{l}{1}\\{-1}\end{array}]$)=M5×$[\begin{array}{l}{6}\\{5}\end{array}]$+2×M5×$[\begin{array}{l}{1}\\{-1}\end{array}]$=85×$[\begin{array}{l}{6}\\{5}\end{array}]$+2×(-3)5×$[\begin{array}{l}{1}\\{-1}\end{array}]$=$[\begin{array}{l}{196122}\\{164326}\end{array}]$.
${M}^{100}\overrightarrow{β}$=M100($[\begin{array}{l}{6}\\{5}\end{array}]$+2×$[\begin{array}{l}{1}\\{-1}\end{array}]$)=M100×$[\begin{array}{l}{6}\\{5}\end{array}]$+2×M100×$[\begin{array}{l}{1}\\{-1}\end{array}]$=8100×$[\begin{array}{l}{6}\\{5}\end{array}]$+2×(-3)100×$[\begin{array}{l}{1}\\{-1}\end{array}]$=$[\begin{array}{l}{6×{8}^{100}+2×{3}^{100}}\\{5×{8}^{100}-2×{3}^{100}}\end{array}]$.
點(diǎn)評(píng) 本題考查的是利用矩陣的特征值和特征向量,進(jìn)行矩陣與向量的積的運(yùn)算,本題難度不大,屬于基礎(chǔ)題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com