欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

20.矩陣M=$[\begin{array}{l}{3}&{6}\\{5}&{2}\end{array}]$有屬于特征值λ1=8的一個(gè)特征向量e1=$[\begin{array}{l}{6}\\{5}\end{array}]$,及屬于特征值λ2=-3的一個(gè)特征向量e2=$[\begin{array}{l}{1}\\{-1}\end{array}]$.
(1)對(duì)于向量$\overrightarrow{α}=[\begin{array}{l}{3}\\{8}\end{array}]$,記做$\overrightarrow{α}={e}_{1}-3{e}_{2}$,利用這一表達(dá)式計(jì)算${M}^{3}\overrightarrow{α}$,${M}^{50}\overrightarrow{α}$;
(2)對(duì)于向量$\overrightarrow{β}=[\begin{array}{l}{8}\\{3}\end{array}]$,計(jì)算 ${M}^{5}\overrightarrow{β}$,${M}^{100}\overrightarrow{β}$.

分析 本題(1)可以將向量$\overrightarrow{α}=[\begin{array}{l}{3}\\{8}\end{array}]$轉(zhuǎn)化為向量e1=$[\begin{array}{l}{6}\\{5}\end{array}]$、向量e2=$[\begin{array}{l}{1}\\{-1}\end{array}]$的線性組合,再利用特征值的計(jì)算規(guī)律,求出算${M}^{3}\overrightarrow{α}$,${M}^{50}\overrightarrow{α}$;(2)類似(1)的計(jì)算,計(jì)算 ${M}^{5}\overrightarrow{β}$,${M}^{100}\overrightarrow{β}$,得到本題結(jié)論.

解答 解:(1)∵矩陣M=$[\begin{array}{l}{3}&{6}\\{5}&{2}\end{array}]$有屬于特征值λ1=8的一個(gè)特征向量e1=$[\begin{array}{l}{6}\\{5}\end{array}]$,及屬于特征值λ2=-3的一個(gè)特征向量e2=$[\begin{array}{l}{1}\\{-1}\end{array}]$,
∴$[\begin{array}{l}{3}&{6}\\{5}&{2}\end{array}]$×$[\begin{array}{l}{6}\\{5}\end{array}]$=8×$[\begin{array}{l}{6}\\{5}\end{array}]$,$[\begin{array}{l}{3}&{6}\\{5}&{2}\end{array}]$×$[\begin{array}{l}{1}\\{-1}\end{array}]$=-3×$[\begin{array}{l}{1}\\{-1}\end{array}]$.
∵$[\begin{array}{l}{3}\\{8}\end{array}]$=$[\begin{array}{l}{6}\\{5}\end{array}]$-3×$[\begin{array}{l}{1}\\{-1}\end{array}]$,
∴${M}^{3}\overrightarrow{α}$=M3($[\begin{array}{l}{6}\\{5}\end{array}]$-3×$[\begin{array}{l}{1}\\{-1}\end{array}]$)=M3×$[\begin{array}{l}{6}\\{5}\end{array}]$-3×M3×$[\begin{array}{l}{1}\\{-1}\end{array}]$=83×$[\begin{array}{l}{6}\\{5}\end{array}]$-3×(-3)3×$[\begin{array}{l}{1}\\{-1}\end{array}]$=$[\begin{array}{l}{6×{8}^{3}+{3}^{4}}\\{5×{8}^{3}-{3}^{4}}\end{array}]$=$[\begin{array}{l}{3153}\\{2479}\end{array}]$.
${M}^{50}\overrightarrow{α}$=M50($[\begin{array}{l}{6}\\{5}\end{array}]$-3×$[\begin{array}{l}{1}\\{-1}\end{array}]$)=M50×$[\begin{array}{l}{6}\\{5}\end{array}]$-3×M50×$[\begin{array}{l}{1}\\{-1}\end{array}]$=850×$[\begin{array}{l}{6}\\{5}\end{array}]$-3×(-3)50×$[\begin{array}{l}{1}\\{-1}\end{array}]$=$[\begin{array}{l}{6×{8}^{50}+(-3)^{51}}\\{5×{8}^{50}-(-3)^{51}}\end{array}]$.
(2)∵$[\begin{array}{l}{8}\\{3}\end{array}]$=$[\begin{array}{l}{6}\\{5}\end{array}]$+2×$[\begin{array}{l}{1}\\{-1}\end{array}]$,

∴${M}^{5}\overrightarrow{β}$=M5($[\begin{array}{l}{6}\\{5}\end{array}]$+2×$[\begin{array}{l}{1}\\{-1}\end{array}]$)=M5×$[\begin{array}{l}{6}\\{5}\end{array}]$+2×M5×$[\begin{array}{l}{1}\\{-1}\end{array}]$=85×$[\begin{array}{l}{6}\\{5}\end{array}]$+2×(-3)5×$[\begin{array}{l}{1}\\{-1}\end{array}]$=$[\begin{array}{l}{196122}\\{164326}\end{array}]$.

${M}^{100}\overrightarrow{β}$=M100($[\begin{array}{l}{6}\\{5}\end{array}]$+2×$[\begin{array}{l}{1}\\{-1}\end{array}]$)=M100×$[\begin{array}{l}{6}\\{5}\end{array}]$+2×M100×$[\begin{array}{l}{1}\\{-1}\end{array}]$=8100×$[\begin{array}{l}{6}\\{5}\end{array}]$+2×(-3)100×$[\begin{array}{l}{1}\\{-1}\end{array}]$=$[\begin{array}{l}{6×{8}^{100}+2×{3}^{100}}\\{5×{8}^{100}-2×{3}^{100}}\end{array}]$.

點(diǎn)評(píng) 本題考查的是利用矩陣的特征值和特征向量,進(jìn)行矩陣與向量的積的運(yùn)算,本題難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

同步練習(xí)冊(cè)答案