| A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | $\frac{4\sqrt{2}}{3}$ |
分析 作出棱錐的高與斜高,得出側面與底面所成角的平面角,利用勾股定理列方程解出底面邊長,代入體積公式計算.
解答
解:過棱錐定點S作SE⊥AD,SO⊥平面ABCD,則E為AD的中點,O為正方形ABCD的中心.
連結OE,則∠SEO為側面SAD與底面ABCD所成角的平面角,即∠SEO=45°.
設正四棱錐的底面邊長為a,則AE=OE=SO=$\frac{a}{2}$,
∴SE=$\sqrt{2}EO$=$\frac{\sqrt{2}}{2}a$.
在Rt△SAE中,∵SA2=AE2+SE2,
∴3=$\frac{{a}^{2}}{4}+\frac{{a}^{2}}{2}$,解得a=2.
∴SO=1,
∴棱錐的體積V=$\frac{1}{3}{S}_{正方形ABCD}•SO$=$\frac{1}{3}×{2}^{2}×1=\frac{4}{3}$.
故選B.
點評 本題考查了正棱錐的結構特征,體積計算,屬于基礎題.
科目:高中數學 來源: 題型:選擇題
| A. | a | B. | b | C. | $\frac{a}{2}$ | D. | $\frac{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | $\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{9}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{7}$=1 | D. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | $\frac{17}{15}$ | B. | $\frac{15}{17}$ | C. | $\frac{3}{5}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | 2 | B. | $\sqrt{3}$ | C. | 4 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | 20π | B. | $\frac{{20\sqrt{5}π}}{3}$ | C. | 5π | D. | $\frac{{5\sqrt{5}π}}{6}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com