已知橢圓的兩焦點(diǎn)為
和
,并且過(guò)點(diǎn)
,求橢圓的方程。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖北省八校高三第二次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知橢圓
的右焦點(diǎn)為
,
為橢圓的上頂點(diǎn),
為坐標(biāo)原點(diǎn),且兩焦點(diǎn)和短軸的兩端構(gòu)成邊長(zhǎng)為
的正方形.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在直線
交與橢圓于
,
,且使
,使得
為
的垂心,若存在,求出
點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東省韶關(guān)市高三4月第二次調(diào)研測(cè)試數(shù)學(xué)理科試卷(解析版) 題型:解答題
已知橢圓
的左右焦點(diǎn)為
,拋物線C:
以F2為焦點(diǎn)且與橢圓相交于點(diǎn)
、![]()
,點(diǎn)
在
軸上方,直線
與拋物線
相切.
(1)求拋物線
的方程和點(diǎn)
、
的坐標(biāo);
(2)設(shè)A,B是拋物線C上兩動(dòng)點(diǎn),如果直線
,
與
軸分別交于點(diǎn)
.
是以
,
為腰的等腰三角形,探究直線AB的斜率是否為定值?若是求出這個(gè)定值,若不是說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年陜西省高三第七次適應(yīng)性考試數(shù)學(xué)(理) 題型:解答題
已知橢圓
的兩焦點(diǎn)
和短軸的兩端點(diǎn)
正好是一正方形的四個(gè)頂點(diǎn),且焦點(diǎn)到橢圓上一點(diǎn)的最近距離為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓上任一點(diǎn),MN 是圓C:
的任一條直徑,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年陜西省高三第七次適應(yīng)性考試數(shù)學(xué)(文) 題型:解答題
(本小題滿分13分)已知橢圓
的兩焦點(diǎn)
和短軸的兩端點(diǎn)
正好是一正方形的四個(gè)頂點(diǎn),且焦點(diǎn)到橢圓上一點(diǎn)的最近距離為
.
![]()
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓上任一點(diǎn),AB 是圓C:
的任一條直徑,求
的
最大值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com