解:(Ⅰ)由已知f(x)的定義域?yàn)椋?,+∞),
f'(x)=x
2-ax=x(x-a),
當(dāng)a≤1時(shí),在(1,+∞)上f'(x)>0,則f(x)在(1,+∞)單調(diào)遞增;
當(dāng)a>1時(shí),在(1,a)上f'(x)<0,在[a,+∞)上f'(x)>0,
所以f(x)在(1,a)單調(diào)遞減,在[a,+∞)上單調(diào)遞增;
(Ⅱ)當(dāng)a=2時(shí),

,f'(x)=x
2-2x,
∴f'(3)=3
2-2×3=3,

,
所求曲線(xiàn)y=f(x)在點(diǎn)(3,f(3))處的切線(xiàn)方程為y-1=3(x-3)即3x-y-8=0.
分析:(Ⅰ)求出f(x)的導(dǎo)函數(shù),令導(dǎo)函數(shù)等于0求出x的值1和a,由x的范圍討論a與1的大小,得到導(dǎo)函數(shù)的正負(fù)進(jìn)而得到f(x)的單調(diào)區(qū)間;
(Ⅱ)把a(bǔ)=2代入f(x)和導(dǎo)函數(shù)中確定出相應(yīng)的解析式,把x=3代入導(dǎo)函數(shù)中求出導(dǎo)函數(shù)的函數(shù)值即為切線(xiàn)的斜率,把x=3代入f(x)中即可得到切點(diǎn)的縱坐標(biāo),進(jìn)而得到切點(diǎn)的坐標(biāo),根據(jù)求出的切點(diǎn)坐標(biāo)和斜率寫(xiě)出切線(xiàn)方程即可.
點(diǎn)評(píng):此題考查學(xué)生會(huì)利用導(dǎo)數(shù)求曲線(xiàn)上過(guò)某點(diǎn)切線(xiàn)方程的斜率,會(huì)根據(jù)導(dǎo)函數(shù)的正負(fù)判斷函數(shù)的單調(diào)區(qū)間,是一道中檔題.