| A. | $\frac{x^2}{5}+\frac{y^2}{4}=1$ | B. | $\frac{x^2}{4}+\frac{y^2}{3}=1$ | C. | $\frac{x^2}{4}+\frac{y^2}{5}=1$ | D. | $\frac{x^2}{9}+\frac{y^2}{5}=1$ |
分析 求得雙曲線的焦點坐標,可得橢圓的c=1,再由橢圓的定義,運用兩點的距離公式計算可得a=2,由a,b,c的關(guān)系,可得b,進而得到橢圓方程.
解答 解:雙曲線C:2x2-2y2=1的焦點為(-1,0),(1,0),
即有橢圓的c=1,
由橢圓的定義可得2a=$\sqrt{(1+1)^{2}+\frac{9}{4}}$+$\sqrt{0+\frac{9}{4}}$=4,
解得a=2,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{3}$,
即有橢圓的方程為$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
故選:B.
點評 本題考查橢圓的方程的求法,注意運用雙曲線的焦點,以及橢圓的定義,考查運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3\sqrt{3}}{4}$ | B. | 3 | C. | $\frac{3\sqrt{3}}{2}$ | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com