欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知cosα=
1
3
cos(α+β)=-
1
3
,且α,β∈(0,
π
2
)
,則cos(α-β)的值等于
 
分析:根據(jù)α的范圍,求出2α的范圍,由cosα的值,利用二倍角的余弦函數(shù)公式求出cos2α的值,然后再利用同角三角函數(shù)間的基本關系求出sin2α的值,又根據(jù)α和β的范圍,求出α+β的范圍,由cos(α+β)的值,利用同角三角函數(shù)間的基本關系求出sin(α+β)的值,然后根據(jù)α-β=2α-(α+β),利用兩角差的余弦函數(shù)公式把所求的式子化簡后,將各自的值代入即可求出值.
解答:解:由2α∈(0,π),及cosα=
1
3
,得到cos2α=2cos2α-1=-
7
9
,且sin2α=
1-(-
7
9
)
2
=
4
2
9
,
由α+β∈(0,π),及cos(α+β)=-
1
3
,得到sin(α+β)=
1-(-
1
3
)
2
=
2
2
3
,
則cos(α-β)=cos[2α-(α+β)]
=cos2αcos(α+β)+sin2αsin(α+β)
=-
7
9
×(-
1
3
)+
4
2
9
×
2
2
3

=
23
27

故答案為:
23
27
點評:此題考查學生靈活運用兩角和與差的余弦函數(shù)公式及同角三角函數(shù)間的基本關系化簡求值,是一道中檔題.解題的關鍵是角度的靈活變換即α-β=2α-(α+β).
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知cosα=
1
3
,且-
π
2
<α<0
,則
cos(-α-π)sin(2π+α)tan(2π-α)
sin(
2
-α)cos(
π
2
+α)
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosθ=
1
3
,θ∈(0,π),則cos(π+2θ)等于
(  )
A、-
4
2
9
B、
4
2
9
C、-
7
9
D、
7
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosβ=-
1
3
,sin(α+β)=
7
9
,α∈(0,
π
2
),β∈(
π
2
,π).
(1)求cos2β的值;
(2)求sinα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosα=
1
3
,且-
π
2
<α<0
,求
cos(-α-π)•sin(π-α)•tan(2π-α)
sin(
2
-α)•cos(
π
2
+α)
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知cosα=-
13
,α為第二象限角,求sinα和tanα及tan2α的值.

查看答案和解析>>

同步練習冊答案