欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(1)在長度為a的線段AB上任意作兩點C,D,求|CD|≤|CA|的概率?

(2)若將長度為a的線段截成三段,則三段長能圍成一個三角形的概率有多大?

解:(1)將線段AB放在數(shù)軸的正方向上,以A為原點,點B的坐標為a,設(shè)點C,D的坐標分別為x,y,而所有可能的結(jié)果都在如圖的正方形內(nèi),|CD|≤|CA|,即|x-y|≤x.

故2x≥y≥0,作出線性規(guī)劃區(qū)域.

則所求概率為P===.

     

(2)設(shè)所截成三角形的三段長度分別為x,y,a-x-y所圍成的三角形的兩條邊x,y由點P(x,y)所確定,則點P(x,y)應(yīng)落在由線性約束條件所確定的可行域內(nèi),而三邊能構(gòu)成三角形的點P(x,y)應(yīng)落在由線形約束條件所確定的可行域內(nèi).

所求概率P=.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,圓A的方程為:(x+3)2+y2=100,定點B(3,0),動點P為圓A上的任意一點.線段BP的垂直平分線和半徑AP相交于點Q,當點P在圓A上運動時,
(1)求|QA|+|QB|的值,并求動點Q的軌跡方程;
(2)設(shè)Q點的橫坐標為x,記PQ的長度為f(x),求函數(shù)f (x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

選考題
請從下列三道題當中任選一題作答,如果多做,則按所做的第一題計分,請在答題卷上注明題號.
22-1設(shè)函數(shù)f(x)=|2x-1|+|2x-3|
(1)解不等式f(x)≤5x+1;
(2)若g(x)=
1
f(x)+m
定義域為R,求實數(shù)m的取值范圍.
22-2如圖,在△ABC中,CD是∠ACB的角平分線,△ACD的外接圓交BC于E,AB=2AC,
(1)求證:BE=2AD;
(2)當AC=1,BC=2時,求AD的長.
22-3已知P為半圓C:
x=cosθ
y=sinθ
(θ為參數(shù),0≤θ≤π)
上的點,點A的坐標為(1,0),O為坐標原點,點M在射線OP上,線段OM與半圓C上的弧AP的長度均為
π
3

(1)求以O(shè)為極點,x軸的正半軸為極軸建立極坐標系,求點M的極坐標;
(2)求直線AM的參數(shù)方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•宿遷一模)【選做題】本題包括A、B、C、D四小題,請選定其中兩題,并在相應(yīng)的答題區(qū)域內(nèi)作答.若多做,則按作答的前兩題評分.解答時應(yīng)寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,已知AB,CD是圓O的兩條弦,且AB是線段CD的 垂直平分線,若AB=6,CD=2
5
,求線段AC的長度.
B.選修4-2:矩陣與變換(本小題滿分10分)
已知矩陣M=
21
1a
的一個特征值是3,求直線x-2y-3=0在M作用下的新直線方程.
C.選修4-4:坐標系與參數(shù)方程(本小題滿分10分)
在平面直角坐標系xOy中,已知曲線C的參數(shù)方程是
x=cosα
y=sinα+1
(α是參數(shù)),若以O(shè)為極點,x軸的正半軸為極軸,取與直角坐標系中相同的單位長度,建立極坐標系,求曲線C的極坐標方程.
D.選修4-5:不等式選講(本小題滿分10分)
已知關(guān)于x的不等式|ax-1|+|ax-a|≥1的解集為R,求正實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•福建模擬)已知中心的坐標原點,以坐標軸為對稱軸的雙曲線C過點Q(2,
3
3
)
,且點Q在x軸上的射影恰為該雙曲線的一個焦點F1
(Ⅰ)求雙曲線C的方程;
(Ⅱ)命題:“過橢圓
x2
25
+
y2
16
=1
的一個焦點F作與x軸不垂直的任意直線l”交橢圓于A、B兩點,線段AB的垂直平分線交x軸于點M,則
|AB|
|FM|
為定值,且定值是
10
3
”.命題中涉及了這么幾個要素:給定的圓錐曲線E,過該圓錐曲線焦點F的弦AB,AB的垂直平分線與焦點所在的對稱軸的交點M,AB的長度與F、M兩點間距離的比值.試類比上述命題,寫出一個關(guān)于拋物線C的類似的正確命題,并加以證明
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關(guān)于圓錐曲線(橢圓、雙曲線、拋物線)的統(tǒng)一的一般性命題(不必證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

下列說法正確的是


  1. A.
    平行向量就是向量所在的直線平行的向量
  2. B.
    長度相等的向量叫相等向量
  3. C.
    零向量的長度為0
  4. D.
    共線向量是在1條直線上的向量

查看答案和解析>>

同步練習冊答案