分析 (1)根據(jù)共線向量的條件得出2×4-m×(-3)=0,求解即可.
(2)根據(jù)垂直向量的條件得出,2×(2m+7)+m×3=0,解得:m=-2,求解向量的坐標(biāo)即可得出數(shù)量積.
解答 解:(1)∵$\overrightarrow{a}$∥$\overrightarrow$,向量$\overrightarrow{a}$=(2,m),$\overrightarrow$=(-3,4),
∴2×4-m×(-3)=0,
∴m=$-\frac{8}{3}$,
(2)∵向量$\overrightarrow{a}$=(2,m),$\overrightarrow$=(-3,4),$\overrightarrow{c}$=(2m+7,3)(m∈R).
$\overrightarrow{a}$⊥$\overrightarrow{c}$,
∴2×(2m+7)+m×3=0,解得:m=-2,
∴$\overrightarrow{a}$$+\overrightarrow{c}$=(2,-2)+(3,3)=(5,1),
∴($\overrightarrow{a}$+$\overrightarrow{c}$)•$\overrightarrow$=5×(-3)+4×1=-11.
點評 本題考察了平面向量的坐標(biāo)運算,向量的平行,垂直的性質(zhì),屬于容易題,計算準(zhǔn)確即可.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | -$\frac{\sqrt{15}}{4}$ | B. | $\frac{\sqrt{15}}{4}$ | C. | -$\frac{1}{4}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{12-8ln2}{1-2ln2}$ | B. | $\frac{2}{1-2ln2}$ | C. | $\frac{4}{1-2ln2}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | (-∞,-1)∪(2,+∞) | B. | (-∞,-1)∪(0,2) | C. | (-1,0)∪(0,2) | D. | (-1,2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com