【題目】設(shè)
為整數(shù),若對(duì)任意的
,不等式
恒成立,則
的最大值是__________.
【答案】1
【解析】
由題意先代入x=1求得a的范圍,要滿足題意,則a
是必要條件,又
為整數(shù),只需再驗(yàn)證a=1時(shí),不等式恒成立即可,構(gòu)造函數(shù)g(x)
,x∈
,通過(guò)求導(dǎo)求得最小值,證明結(jié)論成立.
由題意對(duì)任意的
,不等式
恒成立,則x=1時(shí),不等式
也成立,
代入x=1得e+3
,又
為整數(shù),則a
,這是滿足題意的一個(gè)必要條件,又
為整數(shù),
只需驗(yàn)證a=1時(shí),對(duì)任意的
,不等式
恒成立,
即證
,變形為
對(duì)任意的
恒成立,
令g(x)
,x∈
,
則g′(x)
,在(0,1)上小于0,在(1,
)上大于0,
故g(x)在(0,1)遞減,在(1,
)遞增,∴g(x)
g(1)=3>0,
∴
對(duì)任意的
恒成立,
故a=1滿足題意.
故答案為1.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐
的底面是正方形,
,點(diǎn)E在棱PB上.
(Ⅰ)求證:平面
;
(Ⅱ)當(dāng)
且E為PB的中點(diǎn)時(shí),求AE與平面PDB所成的角的大小.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直三棱柱
,
,E是棱
上動(dòng)點(diǎn),F是AB中點(diǎn),
,
.
![]()
(1)求證:
平面
;
(2)當(dāng)
是棱
中點(diǎn)時(shí),求
與平面
所成的角;
(3)當(dāng)
時(shí),求二面角
的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱柱
中,
平面
,
為
邊上一點(diǎn),
,
.
![]()
(1)證明:平面
平面
.
(2)若
,試問(wèn):
是否與平面
平行?若平行,求三棱錐
的體積;若不平行,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直三棱柱ABC-A1B1C1中,底面△ABC是直角三角形,AC=BC=AA1=2,D為側(cè)棱AA1的中點(diǎn).
![]()
(1)求異面直線DC1,B1C所成角的余弦值;
(2)求二面角B1-DC-C1的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在湖南師大附中的校園歌手大賽決賽中,有6位參賽選手(1號(hào)至6號(hào))登臺(tái)演出,由現(xiàn)場(chǎng)的100位同學(xué)投票選出最受歡迎的歌手,各位同學(xué)須彼此獨(dú)立地在投票器上選出3位侯選人,其中甲同學(xué)是1號(hào)選手的同班同學(xué),必選1號(hào),另在2號(hào)至6號(hào)選手中隨機(jī)選2名;乙同學(xué)不欣賞2號(hào)選手,必不選2號(hào),在其他5位選手中隨機(jī)選出3名;丙同學(xué)對(duì)6位選手的演唱沒有偏愛,因此在1號(hào)至6號(hào)選手中隨機(jī)選出3名.
(1)求同學(xué)甲選中3號(hào)且同學(xué)乙未選中3號(hào)選手的概率;
(2)設(shè)3號(hào)選手得到甲、乙、丙三位同學(xué)的票數(shù)之和為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義在
上的函數(shù)
,
單調(diào)遞增,
,若對(duì)任意
,存在
,使得
成立,則稱
是
在
上的“追逐函數(shù)”.若
,則下列四個(gè)命題:①
是
在
上的“追逐函數(shù)”;②若
是
在
上的“追逐函數(shù)”,則
;③
是
在
上的“追逐函數(shù)”;④當(dāng)
時(shí),存在
,使得
是
在
上的“追逐函數(shù)”.其中正確命題的個(gè)數(shù)為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線
,過(guò)點(diǎn)
的直線與拋物線
相切,設(shè)第一象限的切點(diǎn)為
.
(1)求點(diǎn)
的坐標(biāo);
(2)若過(guò)點(diǎn)
的直線
與拋物線
相交于兩點(diǎn)
,圓
是以線段
為直徑的圓過(guò)點(diǎn)
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體ABCDEF中,四邊形ADEF為正方形,AD∥BC,AD⊥AB,AD=2BC=2.
![]()
(1)證明:平面ADEF⊥平面ABF.
(2)若平面ADEF⊥平面ABCD,二面角A-BC-E為30°,三棱錐A-BDF的外接球的球心為O,求異面直線OC與DF所成角的余弦值
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com