欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.每逢節(jié)假日,在微信好友群發(fā)紅包逐漸成為一種時尚.某女士每月發(fā)紅包的個數(shù)y(個)與月收入x(千元)具有線性相關關系,用最小二乘法建立回歸方程為$\hat y$=8.9x+0.3,則下列說法不正確的是(  )
A.y與x具有正線性相關關系
B.回歸直線必過點($\overline{x}$,$\overline{y}$)
C.該女士月收入增加1000元,則其發(fā)紅包的數(shù)量約增加9個
D.該女士月收入為3000元,則可斷定其發(fā)紅包的數(shù)量為27個

分析 根據(jù)回歸方程為$\hat y$=8.9x+0.3,8.9>0,可知A,B,C均正確,對于D回歸方程只能進行預測,但不可斷定.

解答 解:對于A,8.9>0,所以y與x具有正的線性相關關系,故正確;
對于B,回歸直線過樣本點的中心($\overline{x}$,$\overline{y}$),故正確;
對于C,∵回歸方程為$\hat y$=8.9x+0.3,∴該女士月收入增加1000元,則其發(fā)紅包的數(shù)量約增加9個,故正確;
對于D,x=3000時,y=8.9×3+0.3=27,但這是預測值,不可斷定其發(fā)紅包的數(shù)量為27個,故不正確.
故選D.

點評 本題考查線性回歸方程,考查學生對線性回歸方程的理解,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.如圖所示,該幾何體是由一個直三棱柱ADE-BCF和一個正四棱錐P-ABCD組合而成,AD⊥AF,AE=AD=2.
(1)證明:平面PAD⊥平面ABFE;
(2)求正四棱錐P-ABCD的高h,使得二面角C-AF-P的余弦值是$\frac{{2\sqrt{2}}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.如圖,網格紙上小正方形的邊長為1,粗實(虛)線畫出的是某多面體的三視圖,則該多面體的體積為(  )
A.64B.$\frac{64}{3}$C.16D.$\frac{16}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.電影《功夫熊貓3》預計在2016年1月29日上映,某地電影院為了了解當?shù)赜懊詫ζ眱r的看法,進行了一次調研,得到了票價x(單位:元)與渴望觀影人數(shù)y(單位:萬人)的結果如表:
 x(單位:元) 30 40 50 60
 y(單位:萬人) 4.5 4 3 2.5
(1)若y與x具有較強的相關關系,試分析y與x之間是正相關還是負相關;
(2)請根據(jù)如表提供的數(shù)據(jù),用最小二乘法求出y關于x的線性回歸方程;
(3)根據(jù)(2)中求出的線性回歸方程,預測票價定為多少元時,能獲得最大票房收入.
參考公式:b=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overrightarrow{x}\overrightarrow{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{x}^{-2}}$,$\overrightarrow{a}$=$\overrightarrow{y}$-$\widehat$$\overrightarrow{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.如圖,網絡紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積為( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.某位同學進行寒假社會實踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關系進行分析研究,他分別記錄了1月11日至1月15日的白天平均氣溫x(°C)與該奶茶店的這種飲料銷量y(杯),得到如表數(shù)據(jù):
日    期1月11日1月12日1月13日1月14日1月15日
平均氣溫x(℃)91012118
銷量y(杯)2325302621
(1)若從這五組數(shù)據(jù)中隨機抽出2組,求抽出的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)請根據(jù)所給五組數(shù)據(jù),求出y關于x的線性回歸方程$\widehaty$=$\widehatb$x+$\widehata$.
(3)若1月份該地區(qū)平均氣溫為12℃,試根據(jù)(2)求出的線性回歸方程,預測本月共銷售該種飲料多少杯?
(參考公式:$\left\{\begin{array}{l}{\widehat=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}}\\{\widehat{a}=\overline{y}-\widehat\overline{x}}\\{\;}\end{array}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知點P(2,$\sqrt{3}$),直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=2+\sqrt{3}t}\\{y=\sqrt{3}+t}\\{\;}\end{array}\right.$(t為參數(shù)).以平面直角坐標系坐標原點為極點,x軸的非負半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=4cos(θ-$\frac{π}{3}$).
(1)求曲線C的直角坐標方程和直線l的極坐標方程;
(2)設曲線與直線l相交于A、B兩點,求|PA|•|PB|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.點P是曲線ρ=2(0≤θ≤π)上的動點,A(2,0),AP的中點為Q.
(1)求點Q的軌跡C的直角坐標方程;
(2)若C上點 M處的切線斜率的取值范圍是[-$\sqrt{3}$,-$\frac{{\sqrt{3}}}{3}}$],求點 M橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.空間直角坐標系中點P(1,3,5)關于原點對稱的點P′的坐標是( 。
A.(-1,-3,-5)B.(-1,-3,5)C.(1,-3,5)D.(-1,3,5)

查看答案和解析>>

同步練習冊答案