欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知函數(shù)f(x)=lnx+ax2+bx(其中a,b)為常數(shù)且a≠0)在x=1處取得極值.
(I) 當(dāng)a=1時,求f(x)的單調(diào)區(qū)間;
(II) 若f(x)在(0,e]上的最大值為1,求a的值.
(I)因為f(x)=lnx+ax2+bx所以f′(x)=
1
x
+2ax+b,…(2分)
因為函數(shù)f(x)=lnx+ax2+bx在x=1處取得極值
f′(1)=1+2a+b=0…(3分)
當(dāng)a=1時,b=-3,f′(x)=
2x2-3x+1
x

f′(x),f(x)隨x的變化情況如下表:
x (0,
1
2
1
2
1
2
,1)
1 (1,+∞)
f′(x) + 0 - 0 +
f(x)  極大值  極小值
…(5分)
所以f(x)的單調(diào)遞增區(qū)間為(0,
1
2
),(1,+∞)
單調(diào)遞減區(qū)間為(
1
2
,1)…(6分)
(II)因為f′(x)=
(2ax-1)(x-1)
x

令f′(x)=0,x1=1,x2=
1
2a
…(7分)
因為f(x)在 x=1處取得極值,所以x2=
1
2a
≠x1=1,
當(dāng)
1
2a
<0時,f(x)在(0,1)上單調(diào)遞增,在(1,e]上單調(diào)遞減
所以f(x)在區(qū)間(0,e]上的最大值為f(1),
令f(1)=1,解得a=-2…(9分)
當(dāng)a>0,x2=
1
2a
>0
當(dāng)
1
2a
<1時,f(x)在(0,
1
2a
)上單調(diào)遞增,(
1
2a
,1)上單調(diào)遞減,(1,e)上單調(diào)遞增
所以最大值1可能在x=
1
2a
或x=e處取得
而f(
1
2a
)=ln
1
2a
+a(
1
2a
2-(2a+1)
1
2a
=ln
1
2a
-
1
4a
<0
所以f(e)=lne+ae2-(2a+1)e=1,解得a=
1
e-2
…(11分)
當(dāng)1≤
1
2a
<e時,f(x)在區(qū)間(0,1)上單調(diào)遞增,(1,
1
2a
)上單調(diào)遞減,(
1
2a
,e)上單調(diào)遞增
所以最大值1可能在x=1或x=e處取得
而f(1)=ln1+a-(2a+1)<0
所以f(e)=lne+ae2-(2a+1)e=1,
解得a=
1
e-2
,與1<x2=
1
2a
<e矛盾…(12分)
當(dāng)x2=
1
2a
≥e時,f(X)在區(qū)間(0,1)上單調(diào)遞增,在(1,e)單調(diào)遞減,
所以最大值1可能在x=1處取得,而f(1)=ln1+a-(2a+1)<0,矛盾
綜上所述,a=
1
e-2
或a=-2.…(13分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點M(x0,y0)(其中x0∈(x1,x2))使得點M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時,對于函數(shù)f(x)圖象上不同兩點A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點;
(Ⅱ)若直線l過點(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案