欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.下列命題:
①“在三角形ABC中,若sinA>sinB,則A>B”的逆命題是真命題;
②命題p:x≠2或y≠3,命題q:x+y≠5,則p是q的必要不充分條件;
③“?x∈R,x3-x2+1≤0”的否定是“?x∈R,x3-x2+1>0”;
④“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
其中正確的序號(hào)為①②④.

分析 ①原命題的逆命題為:“若A>B,則sinA>sinB”,利用正弦定理可得A>B?a>b?sinA>sinB,即可判斷出正誤;
②由x≠2,或y≠3,得不到x+y≠5,比如x=1,y=4,x+y=5;若x+y≠5,則一定有x≠2且y≠3,一定判斷出正誤;
③利用命題的否定即可判斷出正誤;
④利用否命題的定義即可判斷出正誤.

解答 解:①“在三角形ABC中,若sinA>sinB,則A>B”的逆命題為:“若A>B,則sinA>sinB”,由A>B?a>b?sinA>sinB,因此是真命題;
②由x≠2,或y≠3,得不到x+y≠5,比如x=1,y=4,x+y=5,∴p不是q的充分條件;若x+y≠5,則一定有x≠2且y≠3,即能得到x≠2,或y≠3,∴p是q的必要條件;∴p是q的必要不充分條件,所以該命題正確;
③“?x∈R,x3-x2+1≤0”的否定是“?x0∈R,x3-x2+1>0”,因此是假命題;
④“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”,是真命題.
其中正確的序號(hào)為①②④.
故答案為:①②④.

點(diǎn)評(píng) 本題考查了簡(jiǎn)易邏輯的判定方法、正弦定理,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知|$\overrightarrow{a}$|=5,|$\overrightarrow$|=4,$\overrightarrow{a}$,$\overrightarrow$夾角為120°,求:
(1)(2$\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+3$\overrightarrow$);
(2)|$\overrightarrow{a}$+2$\overrightarrow$|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)f(x)=log2(2x-2).
求:(1)f(x)的定義域;
(2)使f(x)>1的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.?dāng)S一枚均勻的硬幣4次,則出現(xiàn)正面的次數(shù)多于反面的次數(shù)的概率為( 。
A.$\frac{1}{2}$B.$\frac{2}{5}$C.$\frac{5}{16}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列命題中的真命題是(  )
A.?x0∈R,使得x0+$\frac{1}{x0}$=$\frac{3}{2}$B.?x∈(0,+∞),ex>x+1
C.?x0∈R,使得x${\;}_{{0}^{\;}}$2-x0+1=0D.?x∈(0,π),sinx>cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.下列有關(guān)命題的說(shuō)法正確的是( 。
A.命題“若x2=1,則x=1”的否命題為:“若x2=1,則x≠1”
B.命題“?x∈R,x2+x+2<0”的否定是真命題
C.命題“若x=y,則x2=y2”的逆否命題是假命題
D.已知m,n∈N,命題“若m+n是奇數(shù),則m,n這兩個(gè)數(shù)中一個(gè)為奇數(shù),另一個(gè)為偶數(shù)”的逆命題為假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{16}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.復(fù)數(shù)$\frac{3+i}{1-i}$=(  )
A.1+2iB.1-2iC.2+iD.2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={-1,0,1,2},B={x|x≥2},則A∩B=( 。
A.{-1,1,2}B.{1,2}C.{-1,2}D.{2}

查看答案和解析>>

同步練習(xí)冊(cè)答案