【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系
中,曲線
的參數(shù)方程為
為參數(shù)),以坐標原點
為極點,以
軸非負半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求曲線
的極坐標方程及直線
的直角坐標方程;
(2)設(shè)直線
與曲線
交于
兩點,求
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,三棱柱
中,側(cè)面
底面
,
,且
,O為
中點.
![]()
(Ⅰ)證明:
平面
;
(Ⅱ)求直線
與平面
所成角的正弦;
(Ⅲ)在
上是否存在一點
,使得
平面
,若不存在,說明理由;若存在,確定點
的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體ABCD﹣A1B1C1D1中,AB=AD=1,AA1=2,點P為DD1的中點. ![]()
(1)求證:直線BD1∥平面PAC;
(2)求證:直線PB1⊥平面PAC.
(3)求三棱錐B﹣PAC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
以直角坐標系的原點
為極點,
軸的正半軸為極軸建立極坐標系,已知點
的直角坐標為
,若直線
的極坐標方程為
曲線
的參數(shù)方程是
(
為參數(shù)).
(1)求直線
和曲線
的普通方程;
(2)設(shè)直線
和曲線
交于
兩點,求![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線
經(jīng)過點
,
在點
處的切線交
軸于點
,直線
經(jīng)過點
且垂直于
軸.
(1)求線段
的長;
(2)設(shè)不經(jīng)過點
和
的動直線
交
于點
和
,交
于點
,若直線
、
、
的斜率依次成等差數(shù)列,試問:
是否過定點?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一企業(yè)從某生產(chǎn)線上隨機抽取
件產(chǎn)品,測量這些產(chǎn)品的某項技術(shù)指標值
,得到的頻率分布直方圖如圖.
![]()
(1)估計該技術(shù)指標值
平均數(shù)
;
(2)在直方圖的技術(shù)指標值分組中,以
落入各區(qū)間的頻率作為
取該區(qū)間值的頻率,若
,則產(chǎn)品不合格,現(xiàn)該企業(yè)每天從該生產(chǎn)線上隨機抽取
件產(chǎn)品檢測,記不合格產(chǎn)品的個數(shù)為
,求
的數(shù)學(xué)期望
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)![]()
(1)討論函數(shù)
的單凋性;
(2)若存在
使得對任意的
不等式
(其中e為自然對數(shù)的底數(shù))都成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn,a1=1,an+1=2Sn+1(n∈N*),等差數(shù)列{bn}中,bn>0(n∈N*),且b1+b2+b3=15,又a1+b1、a2+b2、a3+b3成等比數(shù)列.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)求數(shù)列{an·bn}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)下圖是某市今年1月份前30天空氣質(zhì)量指數(shù)(AQI)的趨勢圖.
![]()
(1)根據(jù)該圖數(shù)據(jù)在答題卷中完成頻率分布表,并在圖中補全這些數(shù)據(jù)的頻率分布直方圖;
![]()
(2)當空氣質(zhì)量指數(shù)(AQI)小于100時,表示空氣質(zhì)量優(yōu)良.某人隨機選擇當月(按30天計)某一天
到達該市,根據(jù)以上信息,能否認為此人到達當天空氣質(zhì)量優(yōu)良的可能性超過60%?
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com