欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.已知函數(shù)f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$
(1)求函數(shù)y=f(-2x)+1的最小正周期和單調(diào)遞減區(qū)間;
(2)已知△ABC中的三個內(nèi)角A,B,C所對的邊分別為a,b,c,若銳角A滿足f($\frac{A}{2}$-$\frac{π}{6}$)=$\sqrt{3}$,且a=8,sinB+sinC=$\frac{{13\sqrt{3}}}{16}$,求△ABC的面積.

分析 (1)化簡可得f(x)=2sin(2x+$\frac{π}{3}$),可得y=f(-2x)+1=-2sin(4x-$\frac{π}{3}$)+1,易得最小正周期,解不等式2kπ-$\frac{π}{2}$≤4x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$可得函數(shù)的單調(diào)遞減區(qū)間;
(2)由題意易得A=$\frac{π}{3}$,由正弦定理可得b+c=13,由余弦定理可得bc=35,代入面積公式S=$\frac{1}{2}$bcsinA計算可得.

解答 解:(1)化簡可得f(x)=2sinxcosx+2$\sqrt{3}$cos2x-$\sqrt{3}$
=2sinxcosx+$\sqrt{3}$(2cos2x-1)
=sin2x+$\sqrt{3}$cos2x=2sin(2x+$\frac{π}{3}$),
∴y=f(-2x)+1=2sin(-4x+$\frac{π}{3}$)+1
=-2sin(4x-$\frac{π}{3}$)+1,
∴函數(shù)y=f(-2x)+1的最小正周期T=$\frac{2π}{4}$=$\frac{π}{2}$,
由2kπ-$\frac{π}{2}$≤4x-$\frac{π}{3}$≤2kπ+$\frac{π}{2}$可得$\frac{1}{2}$kπ-$\frac{π}{24}$≤x≤$\frac{1}{2}$kπ+$\frac{5π}{24}$,
∴函數(shù)的單調(diào)遞減區(qū)間為[$\frac{1}{2}$kπ-$\frac{π}{24}$,$\frac{1}{2}$kπ+$\frac{5π}{24}$](k∈Z);
(2)∵f($\frac{A}{2}$-$\frac{π}{6}$)=$\sqrt{3}$,∴2sin(A-$\frac{π}{3}$+$\frac{π}{3}$)=$\sqrt{3}$,
∴sinA=$\frac{\sqrt{3}}{2}$,∵A為銳角,∴A=$\frac{π}{3}$,
由正弦定理可得sinB+sinC=$\frac{b+c}{a}$sinA=$\frac{b+c}{8}$×$\frac{\sqrt{3}}{2}$=$\frac{{13\sqrt{3}}}{16}$,
∴b+c=13,
由余弦定理可得a2=b2+c2-2bccosA=(b+c)2-2bc-2bccosA,
代入數(shù)據(jù)可得64=169-3bc,∴bc=35,
∴△ABC的面積S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×35×\frac{\sqrt{3}}{3}$=$\frac{35\sqrt{3}}{4}$

點評 本題考查兩角和與差的三角函數(shù)公式,涉及三角函數(shù)的單調(diào)性和周期性以及解三角形,屬中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosB=$\frac{4}{5}$,b=6,
(1)當(dāng)a=5時,求角A;
(2)當(dāng)△ABC的面積為27時,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知冪函數(shù)f(x)=${x^{-\frac{1}{2}}}$,若f(a-1)<f(8-2a),則a的取值范圍是(3,4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若直線y=x+t與曲線y=ex相切,則t=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知函數(shù)f(x)=ln(ax+1)+x3-x2-ax在[2,+∞)上為增函數(shù),則實數(shù)a的取值范圍為[0,4+2$\sqrt{5}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在空間直角坐標(biāo)系中,點A(1,2,3)與點B(-1,3,-2)的距離為$\sqrt{30}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.觀察下列式子:1+$\frac{1}{2^2}$<$\frac{3}{2}$,1+$\frac{1}{2^2}$+$\frac{1}{3^2}$<$\frac{5}{3}$,1+$\frac{1}{2^2}$+$\frac{1}{3^2}$+$\frac{1}{4^2}$<$\frac{7}{4}$,…,則可歸納出$1+\frac{1}{2^2}+\frac{1}{3^2}+…+\frac{1}{{{{(n+1)}^2}}}<\frac{2n+1}{n+1}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.把分別標(biāo)有“我”“愛”“你”的三張卡片隨意的排成一排,則能使卡片從左到右可以念成“我愛你”和“你愛我”的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.在對人們的休閑方式的一次調(diào)查中,共調(diào)查了100人,其中女性20人,男性80人.女性中有10人主要的休閑方式是看電視,另外10人主要的休閑方式是運動;男性中有20人主要的休閑方式是看電視,另外60人主要的休閑方式是運動.
(1)根據(jù)以上數(shù)據(jù)建立一個2×2的列聯(lián)表;
(2)能否在犯錯誤的概率不超過0.05的前提下認(rèn)為性別與休閑方式有關(guān)系?
參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
參考數(shù)據(jù):
P(k2>k)0.400.250.150.100.050.0250.0100.0050.001
  k0.7081.3232.0722.7063.845.0246.6357.87910.83

查看答案和解析>>

同步練習(xí)冊答案