【題目】某民調(diào)機(jī)構(gòu)為了了解民眾是否支持英國(guó)脫離歐盟,隨機(jī)抽調(diào)了100名民眾,他們的年齡的頻數(shù)及支持英國(guó)脫離歐盟的人數(shù)分布如下表:
年齡段 | 18-24歲 | 25-49歲 | 50-64歲 | 65歲及以上 |
頻數(shù) | 35 | 20 | 25 | 20 |
支持脫歐的人數(shù) | 10 | 10 | 15 | 15 |
(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為以50歲胃分界點(diǎn)對(duì)是否支持脫離歐盟的態(tài)度有差異;
年齡低于50歲的人數(shù) | 年齡不低于50歲的人數(shù) | 合計(jì) | |
支持“脫歐”人數(shù) | |||
不支持“脫歐”人數(shù) | |||
合計(jì) |
附:![]()
![]()
(Ⅱ)若采用分層抽樣的方式從18-64歲且支持英國(guó)脫離歐盟的民眾中選出7人,再?gòu)倪@7人中隨機(jī)選出2人,求這2人至少有1人年齡在18-24歲的概率.
【答案】(I)有99%的把握認(rèn)為以50歲為分界點(diǎn)對(duì)是否支持脫離歐盟的態(tài)度有差異;(II)
.
【解析】試題分析:(1)運(yùn)用線(xiàn)性回歸中的卡方系數(shù)及聯(lián)表進(jìn)行分析推斷;(2)運(yùn)用列舉法與古典概型的計(jì)算公式探求:
試題解析:
解:(I)
年齡低于50歲的人數(shù) | 年齡不低于50歲的人數(shù) | 合計(jì) | |
支持“脫歐”人數(shù) | 20 | 30 | 50 |
不支持“脫歐”人數(shù) | 35 | 15 | 50 |
合計(jì) | 55 | 45 | 100 |
![]()
所以有99%的把握認(rèn)為以50歲為分界點(diǎn)對(duì)是否支持脫離歐盟的態(tài)度有差異.
(II)18-24歲2人,25-49歲2人,50-64歲3人 .
記18-24歲的兩人為
;25-49歲的兩人為
;50-64歲的三人為
,
則
,
共21種,其中含有
或
的有11種.
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)電飯煲,每年需投入固定成本40萬(wàn)元,每生產(chǎn)1萬(wàn)件還需另投入16萬(wàn)元的變動(dòng)成本,設(shè)該公司一年內(nèi)共生產(chǎn)電飯煲
萬(wàn)件并全部銷(xiāo)售完,每一萬(wàn)件的銷(xiāo)售收入為
萬(wàn)元,且
(
),該公司在電飯煲的生產(chǎn)中所獲年利潤(rùn)為
(萬(wàn)元),(注:利潤(rùn)=銷(xiāo)售收入-成本)
(1)寫(xiě)出年利潤(rùn)
(萬(wàn)元)關(guān)于年產(chǎn)量
(萬(wàn)件)的函數(shù)解析式,并求年利潤(rùn)的最大值;
(2)為了讓年利潤(rùn)
不低于2360萬(wàn)元,求年產(chǎn)量
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)樹(shù)形圖依據(jù)下列規(guī)律不斷生長(zhǎng),1個(gè)空心圓點(diǎn)到下一行僅生長(zhǎng)出1個(gè)實(shí)心圓點(diǎn),1個(gè)實(shí)心圓點(diǎn)到下一行生長(zhǎng)出1個(gè)實(shí)心圓點(diǎn)和1個(gè)空心圓點(diǎn),則第11行的實(shí)心圓點(diǎn)的個(gè)數(shù)是![]()
A. 21 B. 34 C. 55 D. 89
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
、
分別是橢圓
的左、右焦點(diǎn),點(diǎn)
是橢圓
上一點(diǎn),且
.
(1)求橢圓
的方程;
(2)設(shè)直線(xiàn)
與橢圓
相交于
,
兩點(diǎn),若
,其中
為坐標(biāo)原點(diǎn),判斷
到直線(xiàn)
的距離是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)擬在高一下學(xué)期開(kāi)設(shè)游泳選修課,為了了解高一學(xué)生喜歡游泳是否與性別有關(guān),現(xiàn)從高一學(xué)生中抽取100人做調(diào)查,得到如下
列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計(jì) | |
男生 | 10 | ||
女生 | 20 | ||
合計(jì) |
已知在這100人中隨機(jī)抽取一人抽到喜歡游泳的學(xué)生的概率為
.
(Ⅰ)請(qǐng)將上述列聯(lián)表補(bǔ)充完整,并判斷是否有
的把握認(rèn)為喜歡游泳與性別有關(guān)?并說(shuō)明你的理由;
(Ⅱ)針對(duì)問(wèn)卷調(diào)查的100名學(xué)生,學(xué)校決定從喜歡游泳的人中按分層抽樣的方法隨機(jī)抽取6人成立游泳科普知識(shí)宣傳組,并在這6人中任選兩人作為宣傳組的組長(zhǎng),求這兩人中至少有一名女生的概率.
參考公式:
,其中
.
參考數(shù)據(jù):
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一段演繹推理:“直線(xiàn)平行于平面,則這條直線(xiàn)平行于平面內(nèi)所有直線(xiàn);已知直線(xiàn)
平面
,直線(xiàn)
平面
,直線(xiàn)
∥平面
,則直線(xiàn)
∥直線(xiàn)
”的結(jié)論是錯(cuò)誤的,這是因?yàn)?( )
A. 大前提錯(cuò)誤 B. 小前提錯(cuò)誤 C. 推理形式錯(cuò)誤 D. 非以上錯(cuò)誤
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分14分)
如圖的幾何體中,
平面
,
平面
,△
為等邊三角形
,
為
的中點(diǎn).
(1)求證:
平面
;
(2)求證:平面
平面
。![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C對(duì)應(yīng)的邊分別是a,b,c,已知cos 2A-3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面積S=5
,b=5,求sin Bsin C的值.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com