分析 (Ⅰ)由橢圓的離心率公式,求得a2=4b2,將M代入橢圓方程,即可求得a和b的值,求得橢圓方程;
(Ⅱ)將直線l:代入橢圓方程,利用韋達定理及直線的斜率公式,即可取得k1+k2=0.
解答 解:(Ⅰ)依題意,e=$\frac{c}{a}$=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$=$\frac{{\sqrt{3}}}{2}$,則a2=4b2,
由橢圓過點M(4,1),代入橢圓方程:$\frac{{x}^{2}}{4^{2}}+\frac{{y}^{2}}{^{2}}=1$,解得:b2=5,a2=20,
∴橢圓的標準方程:$\frac{{x}^{2}}{20}+\frac{{y}^{2}}{5}=1$;
(Ⅱ)k1+k2為定值0,下面給出證明,
設P(x1,y1),P(x2,y2),
則$\left\{\begin{array}{l}{y=x+m}\\{\frac{{x}^{2}}{20}+\frac{{y}^{2}}{5}=1}\end{array}\right.$,整理得:5x2+8mx+2m2-20=0,
△=(8m)2-4×5×(2m2-20)>0,解得:-5<m<5,且m≠-3,
則x1+x2=-$\frac{8m}{5}$,x1x2=$\frac{4{m}^{2}-20}{5}$,
則k1+k2=$\frac{{y}_{1}-1}{{x}_{1}-4}$+$\frac{{y}_{2}-1}{{x}_{2}-4}$=$\frac{({y}_{1}-1)({x}_{2}-4)+({y}_{2}-1)({x}_{1}-4)}{({x}_{1}-4)({x}_{2}-4)}$,
則(y1-1)(x2-4)+(y2-1)(x1-4)=(x1+m-1)(x2-4)+(x2+m-1)(x1-4),
=2x1x2+(m-5)(x1+x2)-8(m-1),
=2×$\frac{4{m}^{2}-20}{5}$+(m-5)(-$\frac{8m}{5}$)-8(m-1),
=0,
∴k1+k2=0,
∴k1+k2為定值0.
點評 本題考查橢圓的標準方程,直線與橢圓的位置關系,考查韋達定理,直線的斜率公式,考查計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{1}{2}$ | B. | $\frac{21}{25}$ | C. | $\frac{1}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -1 | B. | -i | C. | $\sqrt{2}i$ | D. | $-\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{4\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 數(shù)列{2n-1}的前 4項的和 | B. | 數(shù)列{2n-1}的第4項 | ||
| C. | 數(shù)列{2n}的前5項的和 | D. | 數(shù)列?{2n-1}的第5項 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com