【題目】判斷下列命題的真假,并說明理由.
(1)x∈R,都有x2-x+1>
;
(2)α,β,使cos(α-β)=cos α-cos β;
(3)x,y∈N,都有(x-y)∈N;
(4)x,y∈Z,使
x+y=3.
【答案】(1)(2)(4)為真命題,(3 )為假命題
【解析】試題分析:(1)利用配方判斷真假(2)舉實(shí)例可得存在性命題為真(3)舉反例可得任意性命題為假(4)舉實(shí)例可得存在性命題為真
試題解析:解:(1)法一:當(dāng)x∈R時,x2-x+1=
2+
≥
>
,所以該命題是真命題.
法二:x2-x+1>
x2-x+
>0,由于Δ=1-4×
=-1<0,所以不等式x2-x+1>
的解集是R,所以該命題是真命題.
(2)當(dāng)α=
,β=
時,cos(α-β)=cos
=cos
=cos
=
,cos α-cos β=cos
-cos
=
-0=
,此時cos (α-β)=cos α-cos β,所以該命題是真命題.
(3)當(dāng)x=2,y=4時,x-y=-2N,所以該命題是假命題.
(4)當(dāng)x=0,y=3時,
x+y=3,即x,y∈Z,使
x+y=3,所以該命題是真命題.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某居民區(qū)隨機(jī)抽取10個家庭,獲得第i個家庭的月收入xi(單位:千元)與月儲蓄yi(單位:千元)的數(shù)據(jù)資料,算得 =80, =20, i=184, =720.
(1)求家庭的月儲蓄y對月收入x的線性回歸方程
;
(2)判斷變量x與y之間是正相關(guān)還是負(fù)相關(guān);
(3)若該居民區(qū)某家庭月收入為7千元,預(yù)測該家庭的月儲蓄.
附:線性回歸方程
中,
,其中
為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,AB=5,AC=4,BC=3,AA1=4,D是AB的中點(diǎn).
(Ⅰ)求證:AC⊥B1C;
(Ⅱ)求證:AC1∥平面B1CD![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓
,圓心為
,定點(diǎn)
,
為圓
上一點(diǎn),線段
上一點(diǎn)
滿足
,直線
上一點(diǎn)
,滿足
.
(Ⅰ)求點(diǎn)
的軌跡
的方程;
(Ⅱ)
為坐標(biāo)原點(diǎn),
是以
為直徑的圓,直線
與
相切,并與軌跡
交于不同的兩點(diǎn)
.當(dāng)
且滿足
時,求
面積
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:在數(shù)列
中,若
為常數(shù))則稱
為“等方差數(shù)列”,下列是對“等方差數(shù)列”的有關(guān)判斷( )
①若
是“等方差數(shù)列”,在數(shù)列
是等差數(shù)列;
②
是“等方差數(shù)列”;
③若
是“等方差數(shù)列”,則數(shù)列
為常)也是“等方差數(shù)列”;
④若
既是“等方差數(shù)列”又是等差數(shù)列,則該數(shù)列是常數(shù)數(shù)列.
其中正確命題的個數(shù)為( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)下列條件,分別求拋物線的標(biāo)準(zhǔn)方程:
(1)拋物線的焦點(diǎn)是雙曲線16x2-9y2=144的左頂點(diǎn);
(2)拋物線的焦點(diǎn)F在x軸上,直線y=-3與拋物線交于點(diǎn)A,AF=5.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知
是等差數(shù)列,滿足
,
,數(shù)列
滿足
,
,且
是等比數(shù)列.
(1)求數(shù)列
和
的通項(xiàng)公式;
(2)求數(shù)列
的前
項(xiàng)和.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com