(Ⅰ)證明
;
(Ⅱ)設(shè)
為橢圓上的兩個(gè)動(dòng)點(diǎn),
,過(guò)原點(diǎn)
作直線
的垂線
,垂足為
,求點(diǎn)
的軌跡方程.
(Ⅰ)證法一:由題設(shè)
及
,
,不妨設(shè)點(diǎn)
,其中
.由于點(diǎn)
在橢圓上,有
,即
.
解得
,從而得到
.
直線
的方程為
,整理得
.
由題設(shè),原點(diǎn)
到直線
的距離為
,即
,
將
代入上式并化簡(jiǎn)得
,即
.
證法二:同證法一,得到點(diǎn)
的坐標(biāo)為
.
![]()
過(guò)點(diǎn)
作
,垂足為
,易知![]()
![]()
,故
.
由橢圓定義得
,又
,
所以
,
解得
,而
,得
,即
.
(Ⅱ)解法一:設(shè)點(diǎn)
的坐標(biāo)為
.
當(dāng)
時(shí),由
知,直線
的斜率為
,所以直線
的方程為
,或
,其中
,
.
點(diǎn)
的坐標(biāo)滿足方程組![]()
將①式代入②式,得
,
整理得
,
于是
,
.
由①式得![]()
.
由
知
.將③式和④式代入得
,
.
將
代入上式,整理得
.
當(dāng)
時(shí),直線
的方程為
,
的坐標(biāo)滿足方程組![]()
所以
,
.
由
知
,即
,
解得
.
這時(shí),點(diǎn)
的坐標(biāo)仍滿足
.
綜上,點(diǎn)
的軌跡方程為
.
解法二:設(shè)點(diǎn)
的坐標(biāo)為
,直線
的方程為
,由
,垂足為
,可知直線
的方程為
.
記
(顯然
),點(diǎn)
的坐標(biāo)滿足方程組![]()
由①式得
. ③
由②式得
. 、
將③式代入④式得
.
整理得
,
于是
. ⑤
由①式得
. ⑥
由②式得
. ⑦
將⑥式代入⑦式得
,
整理得
,
于是
. ⑧
由
知
.將⑤式和⑧式代入得
,
.
將
代入上式,得
.
所以,點(diǎn)
的軌跡方程為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
| 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年四川卷理)設(shè)橢圓
的左、右焦點(diǎn)分別是
、
,離心率
,右準(zhǔn)線
上的兩動(dòng)點(diǎn)
、
,且
.
(Ⅰ)若
,求
、
的值;
(Ⅱ)當(dāng)
最小時(shí),求證
與
共線.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分) 已知橢圓
的離心率
,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線
相切。(I)求a與b;(II)設(shè)橢圓的左,右焦點(diǎn)分別是F1和F2,直線
且與x軸垂直,動(dòng)直線
軸垂直,
于點(diǎn)P,求線段PF1的垂直平分線與
的交點(diǎn)M的軌跡方程,并指明曲線類型。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:四川省高考真題 題型:解答題
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省黃山市休寧中學(xué)高三(上)數(shù)學(xué)綜合練習(xí)試卷1(文科)(解析版) 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com