欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知函數(shù)f(x)=x2-ax+2lnx(其中a是實數(shù)).
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)若2(
e
+
1
e
)<a<5
,且f(x)有兩個極值點x1,x2(x1<x2),求|f(x1)-f(x2)|的取值范圍.(其中e是自然對數(shù)的底數(shù))
分析:(Ⅰ)求f(x)的導(dǎo)數(shù)f′(x),利用f'(x)判定f(x)的單調(diào)性,從而求出f(x)的單調(diào)區(qū)間;
(Ⅱ) 由(Ⅰ)知,f(x)在(x1,x2)內(nèi)遞減,得f(x1)>f(x2),求出|f(x1)-f(x2)|的表達(dá)式,從而得取值范圍.
解答:解:(Ⅰ)∵f(x)=x2-ax+2lnx(x>0),∴f′(x)=2x-a+
2
x
=(2x+
2
x
)-a≥4-a;
∴①當(dāng)4-a≥0,即a≤4時,f'(x)≥0,f(x)是增函數(shù),增區(qū)間為(0,+∞);
②當(dāng)a>4時,f′(x)=
2x2-ax+2
x

△=a2-16>0,x1+x2=
a
2
>0,x1x2=1>0
,∴0<x1<x2;
∴f(x)的增區(qū)間為(0,
a-
a2-16
4
),(
a+
a2-16
4
,+∞)
,減區(qū)間為(
a-
a2-16
4
,
a+
a2-16
4
)
;
(Ⅱ) 由(Ⅰ)知,f(x)在(x1,x2)內(nèi)遞減,∴f(x1)>f(x2);
x2=
1
x1
x1
,∴0<x1<1;
2(
e
+
1
e
)<a=2(x1+x2)=2(x1+
1
x1
)<5=2(2+
1
2
)

y=2(x1+
1
x1
)
在(0,1)上遞減,
1
2
x1
1
e
;
|f(x1)-f(x2)|=-
a
2
(x1-x2)+2ln
x1
x2
=
1
x
2
1
-
x
2
1
+4lnx1

g(x1)=
1
x
2
1
-
x
2
1
+4lnx1
(
1
2
x1
1
e
)
,
g′(x1)=-
2(
x
2
1
-1)
2
x
3
1
<0
,∴g(x1)在(
1
2
1
e
)
上遞減;
|f(x1)-f(x2)|∈(e-
1
e
-2,
15
4
-4ln2)
點評:本題考查了利用導(dǎo)數(shù)判定函數(shù)的單調(diào)性以及根據(jù)函數(shù)的單調(diào)性求函數(shù)極值的問題,是易錯題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時,記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案