欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

2.函數(shù)y=2+log${\;}_{\frac{1}{2}}$x(x≥1)的值域是(-∞,2].

分析 利用函數(shù)的定義域結(jié)合函數(shù)的解析式整理計(jì)算即可求得最終結(jié)果.

解答 解:由對(duì)數(shù)函數(shù)的性質(zhì)可得:當(dāng)x≥1時(shí),${log}_{\frac{1}{2}}x≤0$,
則$y=2+{log}_{\frac{1}{2}}x≤2$,即函數(shù)的值域?yàn)椋?∞,2].
故答案為:(-∞,2].

點(diǎn)評(píng) 本題考查了對(duì)數(shù)函數(shù)的性質(zhì),函數(shù)單調(diào)性的應(yīng)用等,重點(diǎn)考查學(xué)生對(duì)基礎(chǔ)概念的理解和計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.“a2>4”是“a>2”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知數(shù)列{an}的通項(xiàng)公式為an=-n+t,數(shù)列{bn}的通項(xiàng)公式為bn=3n-3,設(shè)cn=$\frac{{a}_{n}+_{n}}{2}$+$\frac{|{a}_{n}-_{n}|}{2}$,在數(shù)列{cn}中,cn≥c3(n∈N+),則實(shí)數(shù)t的取值范圍為$(\frac{10}{3},5)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.函數(shù)f(x)=x3+ax2+bx+a2,在x=1時(shí)有極值10且a>0,那么a的值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知$C_n^0+2C_n^1+{2^2}C_n^2+…+{2^n}C_n^n=729$,則(x-3)n的二項(xiàng)式系數(shù)的和32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.作為重慶一中民主管理的實(shí)踐之一,高三年級(jí)可以優(yōu)先選擇教學(xué)樓,為了調(diào)遷了解同學(xué)們的意愿,現(xiàn)隨機(jī)調(diào)出了16名男生和14名女生,結(jié)果顯示,男女生中分別有10人和5人意愿繼續(xù)留在第一教學(xué)樓.
(1)根據(jù)以上數(shù)據(jù)完成以下2×2的列聯(lián)表:
 留在第一教學(xué)樓不留在第一教學(xué)樓總計(jì)
男生10 16
女生5 14
總計(jì)  30
(2)根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否有90%的把握認(rèn)為性別與意愿留在第一教學(xué)樓有關(guān)?
(3)如果從意愿留在第一教學(xué)樓的女生中(其中恰有3人精通制作PPT),選取2名負(fù)責(zé)為第一教學(xué)樓各班圖書(shū)角作一個(gè)總展示的PPT,用于樓道電子顯示屏的宣傳,那么選出的女生中至少有1人能勝任此工作的概率是多少?
參考公式:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k)0.400.250.100.010
k0.7081.3232.7066.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知f(x)=$\frac{1}{2}$x2+2xf′(2017)+2017lnx,則f′(2017)=-2018.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.在平面直角坐標(biāo)系中,A(1,2),B(3,6),則$\overrightarrow{AB}$=( 。
A.(2,-4)B.(-2,0)C.(0,0)D.(2,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.給出下列結(jié)論:
(1)若f(x)是R上奇函數(shù)且滿足f(x+2)=-f(x),則f(x)的圖象關(guān)于x=1對(duì)稱(chēng);
(2)若(2x+$\sqrt{3}$)4=a0+a1x+a2x2+a3x3+a4x4,則(a0+a2+a42-(a1+a32的值為-1;
(3)一個(gè)籃球運(yùn)動(dòng)員投籃一次得3分的概率為a,得2分的概率為b,不得分概率為c,且a,b,c∈(0,1),若他投籃一次得分的數(shù)學(xué)期望為2,則$\frac{2}{a}+\frac{1}{3b}$的最小值為$\frac{16}{3}$;
其中正確結(jié)論的序號(hào)為(1)(3).

查看答案和解析>>

同步練習(xí)冊(cè)答案