【題目】已知在平面直角坐標系中,直線l過點P(1,2).
(1)若直線l在x軸和y軸上的截距相等,求直線l的方程;
(2)求坐標原點O到直線l距離取最大值時的直線l的方程;
(3)設(shè)直線l與x軸正半軸、y軸正半軸分別相交于A,B兩點,當|PA||PB|最小時,求直線l的方程.
【答案】(1)y=2x,x+y=3(2)x+2y-5=0(3)x+y-3=0
【解析】
(1)直線l經(jīng)過原點時滿足條件,可得方程為:y=2x.直線l不經(jīng)過原點時,設(shè)方程為:x+y=a,把點P的坐標代入即可得出a.
(2)坐標原點O到直線l距離取最大值時,直線l⊥OP.可得:kOP=2,kl
.利用點斜式即可得出.
(3)設(shè)直線l的方程為:y﹣2=k(x﹣1),k<0.可得A(1
,0),B(0,2﹣k).利用兩點之間的距離公式可得|PA||PB|,再利用基本不等式的性質(zhì)即可得出.
(1)直線l經(jīng)過原點時滿足條件,可得方程為:y=2x.
直線l不經(jīng)過原點時,設(shè)方程為:x+y=a,可得:a=1+2=3.
可得方程為:x+y=3.
綜上可得:直線l的方程為:y=2x,x+y=3.
(2)坐標原點O到直線l距離取最大值時,直線l⊥OP.
可得:kOP=2,∴kl
.
∴坐標原點O到直線l距離取最大值時的直線l的方程為:y﹣2
(x﹣1),化為:x+2y﹣5=0.
(3)設(shè)直線l的方程為:y﹣2=k(x﹣1),k<0.
可得A(1
,0),B(0,2﹣k).
|PA||PB|![]()
4,
當且僅當k=﹣1時取等號.
此時直線l的方程為:y﹣2=﹣(x﹣1),化為:x+y﹣3=0.
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:
經(jīng)過點
,且離心率為
.
(1)求橢圓C的方程;
(2)設(shè)直線
:
與橢圓C交于兩個不同的點A,B,求
面積的最大值(O為坐標原點).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓
的右焦點
與短軸兩個端點的連線互相垂直.
(1)求橢圓
的標準方程;
(2)設(shè)點
為橢圓
的上一點,過原點
且垂直于
的直線與直線
交于點
,求
面積
的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】有下列命題:①邊長為1的正四面體的內(nèi)切球半徑為
;
②正方體的內(nèi)切球、棱切球(正方體的每條棱都與球相切)、外接球的半徑之比為1:
;
③棱長為1的正方體ABCD-A1B1C1D1的內(nèi)切球被平面A1BD截得的截面面積為
.
其中正確命題的序號是______(請?zhí)钏姓_命題的序號);
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列判斷正確的是( )
A.
或![]()
B.命題“若
都是偶數(shù),則
是偶數(shù)”的逆否命題是“若
不是偶數(shù),則
都不是偶數(shù)”
C.若“
或
”為假命題,則“非
且非
”是真命題
D.已知
是實數(shù),關(guān)于
的不等式
的解集是空集,必有
且![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中,正確的是( )
A.在
中,
,![]()
B.在銳角
中,不等式
恒成立
C.在
中,若
,則
必是等腰直角三角形
D.在
中,若
,
,則
必是等邊三角形
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列有關(guān)命題的說法錯誤的是( )
A. 若“
”為假命題,則p,q均為假命題
B. “
”是“
”的充分不必要條件
C. “
”的必要不充分條件是“
”
D. 若命題p:
,
,則命題
:
,![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,曲線
的參數(shù)方程是
(
為參數(shù)),以原點
為極點,
軸正半軸為極軸,建立極坐標系,直線
的極坐標方程為
.
(Ⅰ)求曲線
的普通方程與直線
的直角坐標方程;
(Ⅱ)已知直線
與曲線
交于
,
兩點,與
軸交于點
,求
.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com