欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情

設各項均為正數的數列{an}滿足

(Ⅰ)若,求a3,a4,并猜想a2co8的值(不需證明);

(Ⅱ)記恒成立,求a2的值及數列{bn}的通項公式.

解:(Ⅰ)因

    

     由此有

故猜想的通項為      

從而

    (Ⅱ)令

     由題設知x1=1且

                      ①

                                  ②

      因②式對n=2成立,有

                                                         ③

      下用反證法證明:

      由①得

      因此數列是首項為,公比為的等比數列.故

                                ④

      又由①知 

      因此是是首項為,公比為-2的等比數列,所以

                                ⑤

      由④-⑤得

                                       ⑥

      對n求和得

          由題設知

            

             從而

       即不等式          22k+1

kN*恒成立.但這是不可能的,矛盾.

因此x2,結合③式知x2=,因此a2==

x2=代入⑦式得   Sn=2-(nN*),

所以bn=2Sn=22(nN*)。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設各項均為正數的數列{an}和{bn}滿足5an,5bn,5an+1成等比數列,lgbn,lgan+1,lgbn+1成等差數列,且a1=1,b1=2,a2=3,求通項an、bn

查看答案和解析>>

科目:高中數學 來源: 題型:

設各項均為正數的數列{an}的前n項和為Sn,已知2a2=a1+a3,數列{
Sn
}
是公差為d的等差數列.
(1)求數列{an}的通項公式(用n,d表示);
(2)設c為實數,對滿足m+n=3k且m≠n的任意正整數m,n,k,不等式Sm+Sn>cSk都成立.求證:c的最大值為
9
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設各項均為正數的數列{an}的前n項和為Sn,已知2a2=a1+a3,數列{
Sn
}
是公差為d的等差數列.
(Ⅰ)求數列{an}的通項公式(用n,d表示);
(Ⅱ)設c為實數,對滿足m+n=3k且m≠n的任意正整數m,n,k,不等式Sm+Sn>cSk都成立.求c的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•廣東)設各項均為正數的數列{an}的前n項和為Sn,滿足4Sn=
a
2
n+1
-4n-1,n∈N*
,且a2,a5,a14構成等比數列.
(1)證明:a2=
4a1+5
;
(2)求數列{an}的通項公式;
(3)證明:對一切正整數n,有
1
a1a2
+
1
a2a3
+…+
1
anan+1
1
2

查看答案和解析>>

科目:高中數學 來源: 題型:

設各項均為正數的數列{an}的前n項和為Sn,對于任意的正整數n都有等式Sn=
1
4
a
2
n
+
1
2
an
(n∈N*)成立.
(1)求數列{an}的通項公式;
(2)令數列bn=|c|
an
2n
,Tn
為數列{bn}的前n項和,若Tn>8對n∈N*恒成立,求c的取值范圍.

查看答案和解析>>

同步練習冊答案