【錯解分析】設(shè)雙曲線方程為

,化簡得:

,代入

,

,

,

焦點在

軸上。這個方法沒錯,但

確定有誤,應(yīng)

,

焦點在

軸上。
【正解】由

得

,可設(shè)

,此時

的斜率大于漸近線的斜率,由圖像的性質(zhì),可知焦點在

軸上。所以選B。
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
已知點

,

,△

的周長為6.
(Ⅰ)求動點

的軌跡

的方程;
(Ⅱ)設(shè)過點

的直線

與曲線

相交于不同的兩點

,

.若點

在

軸上,且

,求點

的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知雙曲線

的一條漸近線與直線

垂直,則曲線的離心率等于
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知某橢圓的焦點是
F1(-4,0)、
F2(4,0),過點
F2并垂直于
x軸的直線與橢圓的一個交點為
B,且|
F1B|+|
F2B|=10,橢圓上不同的兩點
A(
x1,
y1),
C(
x2,
y2)滿足條件 |
F2A|、|
F2B|、|
F2C|成等差數(shù)列(1)求該弦橢圓的方程;(2)求弦
AC中點的橫坐標(biāo);(3)設(shè)弦
AC的垂直平分線的方程為
y=
kx+
m,求
m的取值范圍

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
一雙曲線與橢圓

有共同焦點,并且與其中一個交點的縱坐標(biāo)為4,則這個雙曲線的方程為_____。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,F(xiàn)
1,F(xiàn)
2是雙曲線

的左、右焦點,過F
1的直線
l與C的左、右兩支分別交于A,B兩點.若|AB|:|BF
2|:|AF
2|=3:4:5,則雙曲線的離心率為

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知拋物線

的焦點為
F,準(zhǔn)線為
l,點
P為拋物線上一點,且

,垂足為
A,若直線
AF的斜率為

,則|
PF|等于( )
A. | B.4 | C. | D.8 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知雙曲線

的兩個焦點分別為

、

,則滿足△

的周長為

的動點

的軌跡方程為 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知拋物線的頂點在原點,它的準(zhǔn)線過雙曲線

的一個焦點,并與雙曲線的實軸垂直,已知拋物線與雙曲線的交點為

.
(1)求拋物線的方程;
(2)求雙曲線的方程.
查看答案和解析>>