【題目】在平面直角坐標系
中,已知函數(shù)
的圖像與直線
相切,其中
是自然對數(shù)的底數(shù).
(1)求實數(shù)
的值;
(2)設函數(shù)
在區(qū)間
內有兩個極值點.
①求實數(shù)
的取值范圍;
②設函數(shù)
的極大值和極小值的差為
,求實數(shù)
的取值范圍 .
科目:高中數(shù)學 來源: 題型:
【題目】設集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求實數(shù)a的值;
(2)若A∪B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某縣經濟最近十年穩(wěn)定發(fā)展,經濟總量逐年上升,下表是給出的部分統(tǒng)計數(shù)據(jù):
序號 | 2 | 3 | 4 | 5 | |
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
經濟總量 | 236 | 246 | 257 | 275 | 286 |
(1)如上表所示,記序號為
,請直接寫出
與
的關系式;
(2)利用所給數(shù)據(jù)求經濟總量
與年份
之間的回歸直線方程
;
(3)利用(2)中所求出的直線方程預測該縣2018年的經濟總量.
附:對于一組數(shù)據(jù)
,
其回歸直線
的斜率和截距的最小二乘估計分別為:
,
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系
中,單位圓
上存在兩點
,滿足
均與
軸垂直,設
與
的面積之和記為
.
![]()
若
,求
的值;
若對任意的
,存在
,使得
成立,且實數(shù)
使得數(shù)列
為遞增數(shù)列,其中
求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)=ax﹣(1+a2)x2 , 其中a>0,區(qū)間I={x|f(x)>0}
(1)求I的長度(注:區(qū)間(a,β)的長度定義為β﹣α);
(2)給定常數(shù)k∈(0,1),當1﹣k≤a≤1+k時,求I長度的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設過曲線
上任意一點處的切線為
,總存在過曲線
上一點處的切線
,使得
,則實數(shù)
的取值范圍為_____________________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某市居民自來水收費標準如下:每戶每月用水不超過4噸時,每噸為1.80元,當用水超過4噸時,超過部分每噸3.00元,某月甲、乙兩戶共交水費y元,已知甲、乙兩戶該月用水量分別為5x噸、3x噸.
(1)求y關于x的函數(shù);
(2)若甲、乙兩戶該月共交水費26.4元,分別求出甲、乙兩戶該月的用水量和水費.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a>0,b∈R,函數(shù)f(x)=4ax3﹣2bx﹣a+b.
(1)證明:當0≤x≤1時,
(i)函數(shù)f(x)的最大值為|2a﹣b|+a;
(ii)f(x)+|2a﹣b|+a≥0;
(2)若﹣1≤f(x)≤1對x∈[0,1]恒成立,求a+b的取值范圍.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com