已知
為等比數(shù)列,
為等差數(shù)列
的前n項(xiàng)和,![]()
(1)求
的通項(xiàng)公式;
(2)設(shè)
,求![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| ||
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 1 |
| 2 |
| 1 |
| 7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年度高三數(shù)學(xué)模擬試題分類匯編:數(shù)列 題型:044
已知無(wú)窮等比數(shù)列{an}的首項(xiàng)、公比均為
.
(1)試求無(wú)窮等比子數(shù)列{a3k-1}(k∈N*)各項(xiàng)的和;
(2)是否存在數(shù)列{an}的一個(gè)無(wú)窮等比子數(shù)列,使得它各項(xiàng)的和為
?若存在,求出滿足條件的子數(shù)列的通項(xiàng)公式;若不存在,請(qǐng)說(shuō)明理由;
(3)試設(shè)計(jì)一個(gè)數(shù)學(xué)問(wèn)題,研究:是否存在數(shù)列{an}的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得其各項(xiàng)和之間滿足某種關(guān)系.請(qǐng)寫出你的問(wèn)題以及問(wèn)題的研究過(guò)程和研究結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(09年雅禮中學(xué)月考理)(13分)
定義:將一個(gè)數(shù)列中部分項(xiàng)按原來(lái)的先后次序排列所成的一個(gè)新數(shù)列稱為原數(shù)列的一個(gè)子數(shù)列.已知無(wú)窮等比數(shù)列
的首項(xiàng)和公比均為
.
(1)試求無(wú)窮等比子數(shù)列
(
)各項(xiàng)的和;
(2)已知數(shù)列
的一個(gè)無(wú)窮等比子數(shù)列各項(xiàng)的和為
,求這個(gè)子數(shù)列的通項(xiàng)公式;
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com