欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

3.如圖,直三棱柱ABC-A1B1C1中,D,E分別是AB、BB1的中點(diǎn),AB=BC.
(1)證明:BC1∥平面A1CD;
(2)平面A1EC⊥平面ACC1A1

分析 (1)連結(jié)AC1,交A1C點(diǎn)O,連DO,推出OD∥BC1,即可證明BC1∥平面A1CD.
(2)取AC的中點(diǎn)F,連結(jié)EO,OF,F(xiàn)B,證明四邊形BEOF是平行四邊形,證明BF⊥AC,BF⊥CC1,得到BF⊥平面ACC1A1,然后證明平面A1EC⊥平面ACC1A1

解答 解:(1)連結(jié)AC1,交A1C點(diǎn)O,連DO,則O是AC1的中點(diǎn),
因?yàn)镈是AB的中點(diǎn),故OD∥BC1…(2分)
因?yàn)镺D?平面A1CD,BC1?平面A1CD…(3分)
所以BC1∥平面A1CD…(4分)
(2)取AC的中點(diǎn)F,連結(jié)EO,OF,F(xiàn)B,
因?yàn)镺是AC1的中點(diǎn),
故OF∥AA1且$OF=\frac{1}{2}$AA1…(5分)
顯然BE∥AA1且$BE=\frac{1}{2}$AA1
所以O(shè)F∥BE且OF=BE…(6分)
則四邊形BEOF是平行四邊形…(7分)
所以EO∥BF…(8分)
因?yàn)锳B=BC
所以BF⊥AC…(9分)
又BF⊥CC1
所以直線BF⊥平面ACC1A1…(10分)
因?yàn)镋O∥BF
所以直線EO⊥平面ACC1A1…(11分)
所以平面A1EC⊥平面ACC1A1…(12分)

點(diǎn)評(píng) 本題考查直線與平面垂直的判定定理以及平面與平面垂直的判定定理的應(yīng)用,直線與平面平行的判定定理的應(yīng)用,考查邏輯推理能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知五邊形ABCDE是由直角梯形ABCD和等腰直角三角形ADE構(gòu)成,如圖所示,AB⊥AD,AE⊥DE,AB∥CD,且AB=2CD=2DE=4,將五邊形ABCDE沿著AD折起,且使平面ABCD⊥平面ADE.
(Ⅰ)若M為DE中點(diǎn),邊BC上是否存在一點(diǎn)N,使得MN∥平面ABE?若存在,求$\frac{BN}{BC}$的值;若不存在,說(shuō)明理由;
(Ⅱ)求二面角A-BE-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知數(shù)列{an}滿足:a1=4,an+1=$\frac{n+2}{n}$an+4+$\frac{4}{n}$(n∈N*),則an=5n2+n-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知圓${C_1}:{x^2}+{y^2}-2\sqrt{3}x-4y+6=0$和圓${C_2}:{x^2}+{y^2}-6y=0$,則兩圓的位置關(guān)系為(  )
A.外離B.外切C.相交D.內(nèi)切

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.求值:${({\frac{81}{16}})^{-\frac{1}{4}}}+{log_2}({4^3}×{2^4})$=$\frac{32}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知函數(shù)f(x)=x2+(a+2)x+b,若f(-1)=-2,且對(duì)于任意實(shí)數(shù)x都有f(x)≥2x.
(1)求f(x)的解析式;
(2)討論函數(shù)f(x)在區(qū)間[-3,1]上的單調(diào)性;
(3)求函數(shù)f(x)在區(qū)間[-3,1]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.過(guò)正三棱錐的側(cè)棱與底面中心作截面,已知截面是以側(cè)棱為底邊的等腰三角形,若側(cè)面與底面所成的角為θ,則cosθ=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{3}{4}x+\frac{5}{4},x<1}\\{{2}^{x},x≥1}\end{array}\right.$,則滿足f(f(t))=2f(t)的t的取值范圍是{t|t=-3或t≥-$\frac{1}{3}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖:橢圓$\frac{x^2}{2}+{y^2}$=1與雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)有相同的焦點(diǎn)F1、F2,它們?cè)趛軸右側(cè)有兩個(gè)交點(diǎn)A、B,滿足$\overrightarrow{{F_2}A}+\overrightarrow{{F_2}B}$=0.將直線AB左側(cè)的橢圓部分(含A,B兩點(diǎn))記為曲線W1,直線AB右側(cè)的雙曲線部分(不含A,B兩點(diǎn))記為曲線W2.以F1為端點(diǎn)作一條射線,分別交W1于點(diǎn)P(xP,yP),交W2于點(diǎn)M(xM,yM)(點(diǎn)M在第一象限),設(shè)此時(shí)$\overrightarrow{{F_1}M}=m•\overrightarrow{{F_1}P}$.
(1)求W2的方程;
(2)證明:xP=$\frac{1}{m}$,并探索直線MF2與PF2斜率之間的關(guān)系;
(3)設(shè)直線MF2交W1于點(diǎn)N,求△MF1N的面積S的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案