【答案】
分析:(1)依題意點(diǎn)P
n的坐標(biāo)為(x
n,y
n+1),然后根據(jù)y
n+1=

=

可得x
n+1=x
n+n,然后根據(jù)累加法可求出數(shù)列{x
n}的通項公式;
(2)先判定S
1,S
2,S
3是否滿足條件,然后利用放縮法可知當(dāng)n>3時,S
n=

+

+

+…+

<

+

+

+

+…+

,然后利用等比數(shù)列求和可證得結(jié)論;
(3)根據(jù)d
n=

可知d
n+1<

,T
2n-1=d
1+d
2+…+d
2n-1≤

+

+…+

=

×[1-

],當(dāng)n≥2,k=1,2,…,2n-1時,有d
k+d
2n-k≥

×

=2d
n,從而T
2n-1≥

×(2n-1)×2d
n=(2n-1)×d
n,從而證得結(jié)論.
解答:解:(1)依題意點(diǎn)P
n的坐標(biāo)為(x
n,y
n+1),
∴y
n+1=

=

,∴x
n+1=x
n+n,(2分)
∴x
n=x
n-1+n-1=x
n-2+(n-2)+(n-1)=…=x
1+1+2+…+(n-1)=

+1;(4分)
(2)∵c
n=

,由S
1=1<

,S
2=1+

=

<

,S
3=1+

+

=

<

,
∴當(dāng)n>3時,S
n=

+

+

+…+

<

+

+

+

+…+

=1+

+

×

=

+

-

<

+

-

=

(8分)
(3)∵d
n=

,所以易證:d
n+1<

,
∴當(dāng)n≥2時,d
n<

<

<…<

=

,
∴T
2n-1=d
1+d
2+…+d
2n-1≤

+

+…+

=

×[1-

],(當(dāng)n=1時取“=”)(11分)
另一方面,當(dāng)n≥2,k=1,2,…,2n-1時,有:
d
k+d
2n-k=

×[

]≥

×2

=

=

,
又∵4
k+4
2n-k≥2×4
n,∴4
2n-4
k-4
2n-k+1≤4
2n-2×4
n+1=(4
n-1)
2,
∴d
k+d
2n-k≥

×

=2d
n,
T
2n-1≥

×(2n-1)×2d
n=(2n-1)×d
n.
所以對任意的n∈N
*,都有:(2n-1)•d
n≤T
2n-1≤

×[1-

](14分)
點(diǎn)評:本題主要考查了數(shù)列與不等式的綜合,以及放縮法的運(yùn)用和等比數(shù)列求和,同時考查了計算能力,屬于難題.