欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

設(shè)函數(shù)f(x)=﹣x3+x2+(m2﹣1)x,(x∈R),其中m>0
(Ⅰ)求函數(shù)的單調(diào)區(qū)間與極值;
(Ⅱ)已知函數(shù)g(x)=f(x)+有三個互不相同的零點,求m的取值范圍.

解:(Ⅰ)∵f(x)=﹣x3+x2+(m2﹣1)x,(x∈R),
∴f′(x)=﹣x2+2x+m2﹣1.
令f′(x)=0,解得x=1﹣m,或x=1+m.
因為m>0,所以1+m>1﹣m.
當(dāng)x變化時,f′(x),f(x)的變化情況如下表:

f(x)在x=1﹣m處取極小值
f(1﹣m)=﹣=﹣
f(x)在x=1+m處取極大值
f(1+m)=﹣=
(Ⅱ)∵f(x)=﹣x3+x2+(m2﹣1)x,
∴g(x)=f(x)+=﹣x3+x2+(m2﹣1)x+
由(Ⅰ)知:g(x)在(﹣∞,1﹣m),(1+m,+∞)內(nèi)是減函數(shù),
在(1﹣m,1+m)內(nèi)是增函數(shù).
在x=1﹣m處取極小值,x=1+m處取極大值,
∵函數(shù)g(x)=f(x)+有三個互不相同的零點,且m>0,
,解得
練習(xí)冊系列答案
  • 金色陽光AB卷系列答案
  • 高分計劃一卷通系列答案
  • 單元測評卷精彩考評七年級下數(shù)學(xué)延邊教育出版社系列答案
  • 王朝霞期末真題精編系列答案
  • 各地期末名卷精選系列答案
  • 導(dǎo)與練初中同步練案系列答案
  • 滿分奪冠期末測試卷系列答案
  • 優(yōu)生樂園系列答案
  • 鐘書金牌上海新卷系列答案
  • 加分貓匯練系列答案
  • 年級 高中課程 年級 初中課程
    高一 高一免費課程推薦! 初一 初一免費課程推薦!
    高二 高二免費課程推薦! 初二 初二免費課程推薦!
    高三 高三免費課程推薦! 初三 初三免費課程推薦!
    相關(guān)習(xí)題

    科目:高中數(shù)學(xué) 來源: 題型:

    設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
    (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
    2
    ,求a的值;
    (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
    (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
    2
    2
    ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    設(shè)函數(shù)f(x)的定義域為A,若存在非零實數(shù)t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調(diào)函數(shù).如果定義域為[0,+∞)的函數(shù)f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調(diào)函數(shù),那么實數(shù)m的取值范圍是( 。
    A、[-5,5]
    B、[-
    5
    ,
    5
    ]
    C、[-
    10
    ,
    10
    ]
    D、[-
    5
    2
    ,
    5
    2
    ]

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    (2012•深圳一模)已知函數(shù)f(x)=
    1
    3
    x3+bx2+cx+d
    ,設(shè)曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
    (1)求f(x);
    (2)設(shè)g(x)=x
    f′(x)
     , m>0
    ,求函數(shù)g(x)在[0,m]上的最大值;
    (3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源: 題型:

    設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
    f(-
    3
    4
    ) <f(
    15
    2
    )
    ;
    ②當(dāng)x∈[-1,0]時f(x)=x3+4x+3;
    ③f(x)(x≥0)的圖象與x軸的交點的橫坐標(biāo)由小到大構(gòu)成一個無窮等差數(shù)列;
    ④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
    其中真命題的個數(shù)為(  )

    查看答案和解析>>

    科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

    設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
    (1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
    2
    ,求a的值;
    (2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
    (3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
    2
    2
    ,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

    查看答案和解析>>

    同步練習(xí)冊答案