【題目】已知曲線C的參數(shù)方程為
(φ為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求曲線C的極坐標(biāo)方程;
(Ⅱ)已知傾斜角為135°且過點(diǎn)P(1,2)的直線l與曲線C交于M,N兩點(diǎn),求
的值.
【答案】解:(Ⅰ)曲線C的參數(shù)方程為
(φ為參數(shù)),
消去參數(shù)得曲線C的普通方程為x2+(y﹣3)2=9,即x2+y2﹣6y=0,
即x2+y2=6y,即ρ2=6ρsinθ,故曲線C的極坐標(biāo)方程為ρ=6sinθ.
(Ⅱ)設(shè)直線
(t為參數(shù)),將此參數(shù)方程代入x2+y2﹣6y=0中,
化簡可得
,顯然△>0;
設(shè)M,N所對應(yīng)的參數(shù)分別為t1,t2,故
,
∴
.
【解析】由三角函數(shù)中正、余弦平方和為1進(jìn)行消參,得到平面直角坐標(biāo)系方程,再改寫成極坐標(biāo)方程,(2)根據(jù)題意,寫出直線l的參數(shù)方程,將參數(shù)方程代入曲線C的平面直角坐標(biāo)方程,根據(jù)t的幾何意義,可得值.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)h(x)=﹣|x﹣3|.
(1)若h(x)﹣|x﹣2|≤n對任意的x>0恒成立,求實數(shù)n的最小值;
(2)若函數(shù)f(x)=
,求函數(shù)g(x)=f(x)+h(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,內(nèi)角A,B,C的對邊長分別為a,b,c,且
.
(1)求角B的大。
(2)若
,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中央政府為了應(yīng)對因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”,為了了解人們對“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研,人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計結(jié)果如下:
年齡 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65] |
支持“延遲退休”的人數(shù) | 15 | 5 | 15 | 28 | 17 |
(1)由以上統(tǒng)計數(shù)據(jù)填2×2列聯(lián)表,并判斷是否95%的把握認(rèn)為以45歲為界點(diǎn)的不同人群對“延遲退休年齡政策”的支持有差異;
45歲以下 | 45歲以上 | 總計 | |
支持 | |||
不支持 | |||
總計 |
(2)若以45歲為分界點(diǎn),從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項活動,現(xiàn)從這8人中隨機(jī)抽2人.
①抽到1人是45歲以下時,求抽到的另一人是45歲以上的概率;
②記抽到45歲以上的人數(shù)為X,求隨機(jī)變量X的分布列及數(shù)學(xué)期望.
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=
x3+x2﹣3x,若方程|f(x)|2+t|f(x)|+1=0有12個不同的根,則實數(shù)t的取值范圍為( )
A.(﹣
,﹣2)
B.(﹣∞,﹣2)
C.﹣
<t<﹣2
D.(﹣1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)公比不為1的等比數(shù)列{an}的前n項和Sn , 已知a1a2a3=8,S2n=3(a1+a3+a5+…+a2n﹣1)(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=(﹣1)nlog2an , 求數(shù)列{bn}的前2017項和T2017 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是平行四邊形,側(cè)面PAD是邊長為2的正三角形,AB=BD=
,PB=3.![]()
(1)求證:平面PAD⊥平面ABCD;
(2)設(shè)Q是棱PC上的點(diǎn),當(dāng)PA∥平面BDQ時,求二面角A﹣BD﹣Q的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若sinA=cos(
﹣B),a=3,c=2.
(1)求
的值;
(2)求tan(
﹣B)的值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com