【題目】已知曲線
上的點(diǎn)
與定點(diǎn)
的距離與它到直線
的距離的比是常數(shù)
,又斜率為
的直線
與曲線
交于不同的兩點(diǎn)
。
(Ⅰ)求曲線
的方程;
(Ⅱ)若
,求
的最大值;
(Ⅲ)設(shè)
,直線
與曲線
的另一個(gè)交點(diǎn)為
,直線
與曲線
的另一個(gè)交點(diǎn)為
.若
和點(diǎn)
共線,求
的值。
【答案】(Ⅰ)
;(Ⅱ)
;(Ⅲ)2.
【解析】
(Ⅰ)由已知條件點(diǎn)到點(diǎn)的距離與點(diǎn)到線的距離之比是常數(shù),列出關(guān)系式,化簡(jiǎn)求出曲線方程
(Ⅱ)根據(jù)題意設(shè)直線
的方程為
,聯(lián)立直線方程與曲線方程,運(yùn)用弦長(zhǎng)公式求出弦長(zhǎng)表達(dá)式,求出最大值
(Ⅲ)設(shè)出點(diǎn)坐標(biāo),聯(lián)立直線方程與曲線方程,再由三點(diǎn)共線求出
的值
解:(Ⅰ)根據(jù)題意可得:![]()
整理得:![]()
故曲線
的方程為![]()
(Ⅱ)設(shè)直線
的方程為
,
由
消去
可得
則
設(shè)
則![]()
則
易得當(dāng),
,故
的最大值為![]()
(Ⅲ)設(shè)
則
①,
②,
又
,所以可設(shè)
,直線
的方程為![]()
由
消去
可得
則
即![]()
代入①式可得
,所以
所以
,同理可得
因?yàn)?/span>
三點(diǎn)共線,所以![]()
將點(diǎn)
的坐標(biāo)代入化簡(jiǎn)可得
,即
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)當(dāng)
時(shí),求曲線
在
處的切線方程;
(Ⅱ)若函數(shù)
在定義域內(nèi)不單調(diào),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】企業(yè)需為員工繳納社會(huì)保險(xiǎn),繳費(fèi)標(biāo)準(zhǔn)是根據(jù)職工本人上一年度月平均工資(單位:元)的
繳納,
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
t | 1 | 2 | 3 | 4 | 5 |
y | 270 | 330 | 390 | 460 | 550 |
某企業(yè)員工甲在2014年至2018年各年中每月所撒納的養(yǎng)老保險(xiǎn)數(shù)額y(單位:元)與年份序號(hào)t的統(tǒng)計(jì)如下表:
(1)求出t關(guān)于t的線性回歸方程
;
(2)試預(yù)測(cè)2019年該員工的月平均工資為多少元?
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
(注:
,
,其中
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是函數(shù)
的部分圖象.
![]()
(1)求函數(shù)
的表達(dá)式;
(2)若函數(shù)
滿足方程
,求在
內(nèi)的所有實(shí)數(shù)根之和;
(3)把函數(shù)
的圖象的周期擴(kuò)大為原來(lái)的兩倍,然后向右平移
個(gè)單位,再把縱坐標(biāo)伸長(zhǎng)為原來(lái)的兩倍,最后向上平移一個(gè)單位得到函數(shù)
的圖象.若對(duì)任意的
,方程
在區(qū)間
上至多有一個(gè)解,求正數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】襄陽(yáng)市擬在2021年奧體中心落成后申辦2026年湖北省省運(yùn)會(huì),據(jù)了解,目前武漢,宜昌,黃石等申辦城市因市民擔(dān)心賽事費(fèi)用超支而準(zhǔn)備相繼退出,某機(jī)構(gòu)為調(diào)查襄陽(yáng)市市民對(duì)申辦省運(yùn)會(huì)的態(tài)度,選取某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計(jì)如下:
支持 | 不支持 | 合計(jì) | |
年齡不大于50歲 | 60 | ||
年齡大于50歲 | 10 | ||
合計(jì) | 80 | 100 |
(1)根據(jù)已知數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)能否在犯錯(cuò)誤的概率不超過(guò)
的前提下認(rèn)為不同年齡與支持申辦省運(yùn)會(huì)無(wú)關(guān)?
附:
,
.
| 0.100 | 0.050 | 0.025 | 0.010 |
| 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐D-ABC中,
底面ABC,
為正三角形,若
,
,則三棱錐D-ABC與三棱錐E-ABC的公共部分構(gòu)成的幾何體的外接球的體積為( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人做試驗(yàn),從一個(gè)裝有標(biāo)號(hào)為1,2,3,4的小球的盒子中,無(wú)放回地取兩個(gè)小球,每次取一個(gè),先取的小球的標(biāo)號(hào)為
,后取的小球的標(biāo)號(hào)為
,這樣構(gòu)成有序?qū)崝?shù)對(duì)![]()
(1)寫出這個(gè)試驗(yàn)的所有結(jié)果;
(2)求“第一次取出的小球上的標(biāo)號(hào)為
”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知
,函數(shù)
.
(1)當(dāng)
時(shí),解不等式
;
(2)若關(guān)于
的方程
的解集中恰有一個(gè)元素,求
的取值范圍;
(3)設(shè)
,若對(duì)任意
,函數(shù)
在區(qū)間
上的最大值與最小值的差不超過(guò)1,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列
與
的前
項(xiàng)和分別為
與
,對(duì)任意
,
.
(1)若
,求
;
(2)若對(duì)任意
,都有
.
①當(dāng)
時(shí),求數(shù)列
的前
項(xiàng)和
;
②是否存在兩個(gè)整數(shù)![]()
,使
成等差數(shù)列?若存在,求出
的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com