分析 (1)直接代入計算即可;
(2)先化簡函數,再求函數f(x)的最小正周期及單調遞增區(qū)間.
(3)求出A,c,b,即可求△ABC的面積.
解答 解:(1)f($\frac{5π}{4}$)=2cos$\frac{5π}{4}$(sin$\frac{5π}{4}$+cos$\frac{5π}{4}$)=2.
(2)f(x)=2cos x(sin x+cos x)=sin2x+cos2x+1=$\sqrt{2}$sin(2x+$\frac{π}{4}$)+1.
最小正周期T=π,
由-$\frac{π}{2}$+2kπ≤2x+$\frac{π}{4}$≤$\frac{π}{2}$+2kπ,可得-$\frac{3}{8}$π+kπ≤x≤$\frac{π}{8}$+kπ(k∈Z)
∴單調遞增區(qū)間是[-$\frac{3}{8}$π+kπ,$\frac{π}{8}$+kπ](k∈Z).
(3)f(A)=$\sqrt{2}$sin(2A+$\frac{π}{4}$)+1=2,∴A=$\frac{π}{2}$,
∵a=2,B=$\frac{π}{3}$,∴c=1,b=$\sqrt{3}$,
∴△ABC的面積S=$\frac{1}{2}×1×\sqrt{3}$=$\frac{\sqrt{3}}{2}$.
點評 本題考查三角函數的化簡,考查三角函數的圖象與性質,考查學生的計算能力,屬于中檔題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | {x|1≤x≤4} | B. | {x|-1≤x≤3} | C. | {x|-3≤x≤4} | D. | {x|-1≤x≤1} |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | 周期為$\frac{π}{3}$的函數 | B. | 周期為$\frac{π}{2}$的函數 | C. | 周期為π的函數 | D. | 周期為2π的函數 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com