欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.(1-x)10展開(kāi)式中含x的奇數(shù)項(xiàng)的系數(shù)之和是-516.

分析 設(shè)出展開(kāi)式,分別令x為1,-1得到兩等式,兩式相減得到展開(kāi)式中含x奇次冪的項(xiàng)的系數(shù)和.

解答 解:令(1-x)10=a0+a1x+a2x2 +…+a10x10,
令x=1得0=a0+a1+a2+…+a10
令x=-1得 210=a0-a1+a2-a3…+a10,
兩式相減得-210=2(a1+a3+…+a9),
解得-29=a1+a3+…+a9,故(1-x)10展開(kāi)式中含x的奇次項(xiàng)的系數(shù)和為-29=-516,
故答案為:-516.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)式展開(kāi)式的通項(xiàng)公式,求展開(kāi)式的系數(shù)和常用的方法是賦值法,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.一道數(shù)學(xué)競(jìng)賽題,甲、乙、丙單獨(dú)解出此題的概率分別為$\frac{1}{a}$、$\frac{1}$、$\frac{1}{c}$,其中a、b、c都是小于10的正整數(shù),現(xiàn)甲、乙、丙同時(shí)獨(dú)立解答此題,若三人中恰有一人解出此題的概率為$\frac{7}{15}$,則甲、乙、丙三人都未解出此題的概率為$\frac{4}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.用四種不同的顏色給正方體ABCD-A1B1C1D1的六個(gè)面染色,要求相鄰兩個(gè)面涂不同的顏色,且四種顏色均用完,則所有不同的涂色方法共有(  )
A.24種B.96種C.72種D.48種

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知Sn是數(shù)列{an}的前n項(xiàng)和,a1=2,$\sqrt{{S}_{n}}$-$\sqrt{{S}_{n-1}}$=$\sqrt{2}$(n∈N*,n≥2)
(1)求Sn的表達(dá)式;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)若bn=$\frac{{a}_{n}{a}_{n+1}}{4}$(n∈N*),是否存在正整數(shù)n使得$\frac{1}{_{1}}$+$\frac{1}{_{2}}$+…+$\frac{1}{_{n}}$>2成立?如果存在,請(qǐng)求出n的最小值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.在△ABC中,角A、B、C所對(duì)的邊分別是a、b、c,已知$\frac{4b}{3cosB}$=$\frac{c}{sinC}$,若a+c=1,則b的最小值為$\frac{\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè){an}是等比數(shù)列,{a2n-1}是等差數(shù)列.
(1)若a1=9,求數(shù)列{an}的通項(xiàng)公式;
(2)記數(shù)列{an}的前n項(xiàng)和為Sn,f(n)=Sn+1-n2,若a1+a2=18,求f(1)+$\frac{f(2)}{2}$+$\frac{f(3)}{3}$+…+$\frac{f(n)}{n}$最大值時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.寫出角的終邊在陰影中的角的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$均為單位向量,且$\overrightarrow{a}$⊥$\overrightarrow$.
(1)若存在實(shí)數(shù)λ,μ使得$\overrightarrow{c}$=λ$\overrightarrow{a}$+μ$\overrightarrow$,求證λ22=1;
(2)若($\overrightarrow{a}$-$\overrightarrow{c}$)•($\overrightarrow$-$\overrightarrow{c}$)≤0,求|$\overrightarrow{a}$+$\overrightarrow$-$\overrightarrow{c}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如表:
廣告費(fèi)用x(萬(wàn)元)4235
銷售額y(萬(wàn)元)49263954
根據(jù)上表可得回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$中的$\stackrel{∧}$為9.4,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為7萬(wàn)元時(shí),銷售額為74.9.

查看答案和解析>>

同步練習(xí)冊(cè)答案