欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

4.設(shè)a>0且a≠1.則“函數(shù)f(x)=logax是(0,+∞)上的增函數(shù)”是“函數(shù)g(x)=(1-a)•ax”是R上的減函數(shù)的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

分析 根據(jù)充分條件和必要條件的定義結(jié)合函數(shù)單調(diào)性的性質(zhì)進(jìn)行判斷即可.

解答 解:函數(shù)f(x)=logax是(0,+∞)上的增函數(shù),則a>1,
若“函數(shù)g(x)=(1-a)•ax”是R上的減函數(shù),則$\left\{\begin{array}{l}{a>1}\\{1-a<0}\end{array}\right.$或$\left\{\begin{array}{l}{0<a<1}\\{1-a>0}\end{array}\right.$,即a>1或0<a<1,
故“函數(shù)f(x)=logax是(0,+∞)上的增函數(shù)”是“函數(shù)g(x)=(1-a)•ax”是R上的減函數(shù)的充分不必要條件,
故選:A

點(diǎn)評(píng) 本題主要考查充分條件和必要條件的判斷,根據(jù)函數(shù)的單調(diào)性求出等價(jià)條件是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)f(x)=x3-$\frac{a}{2}$x2-2a2x+$\frac{3}{2}$的圖象經(jīng)過(guò)四個(gè)象限,則a的取值范圍是(-∞,-$\frac{9\sqrt{11}}{22}$)∪(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知直線l:2x-y=3,若矩陣A=$(\begin{array}{l}{-1}&{a}\\&{3}\end{array})$a,b∈R所對(duì)應(yīng)的變換σ把直線l變換為它自身.
(Ⅰ)求矩陣A;                  
(Ⅱ)求矩陣A的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知集合M={x|-1<x<1},N={x|x(x-2)<0},則M∩N為( 。
A.(-1,2)B.(0,1)C.(-1,0)D.(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.從集合{2,3,4,5}中隨機(jī)抽取一個(gè)數(shù)a,從集合{1,3,5}中隨機(jī)抽取一個(gè)數(shù)b,則向量$\overrightarrow{m}$=(a,b)與向量$\overrightarrow{n}$=(-1,1)垂直的概率為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知等差數(shù)列{an}的公差為d(d≠0),等比數(shù)列{bn}的公比為q(q>0),且滿足a1=b1=1,a2=b3,a6=b
5
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}的前n項(xiàng)和為Tn,求證:$\frac{1}{{T}_{1}}$+$\frac{1}{{T}_{2}}$+…+$\frac{1}{{T}_{n}}$<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.由計(jì)算機(jī)產(chǎn)生的兩個(gè)0到1上的隨機(jī)數(shù),按右側(cè)流程圖所示的規(guī)則,則能輸出數(shù)對(duì)(x,y)的概率是1-cos1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x-y+1≥0\\ x+y-3≥0\\ 3x-y-3≤0\end{array}\right.$,則當(dāng)2x-y取得最小值時(shí),x2+y2的值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{x}{lnx}$-ax(a>0,a≠1)
(1)若函數(shù)f(x)在[e,e2]上為單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;
(2)若?x1,x2∈[e,e2],使f(x1)≤f'(x2)+a成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案