分析 (1)根據對數函數的性質求出f(x)的定義域,根據對數的運算性質求出解析式即可;
(2)根據二次函數的性質求出f(x)的對稱軸,從而求出函數的單調區(qū)間即可.
解答 解:(1)由$\left\{\begin{array}{l}{2x>0}\\{2-x>0}\end{array}\right.$,解得:0<x<2,
∵lgy=lg(2x)+lg(2-x)=lg[2x(2-x)]=lg(-2x2+4x),
∴y=-2x2+4x,(0<x<2),
(2)由y=f(x)=-2(x-1)2+2,對稱軸x=1,開口向下,
f(x)在(0,1)遞增,在(1,2)遞減.
點評 本題考查了對數函數、二次函數的性質,是一道基礎題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | $\frac{{3\sqrt{10}}}{10}$ | B. | $\frac{{3\sqrt{10}}}{5}$ | C. | $\frac{{\sqrt{10}}}{5}$ | D. | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | $\frac{32π}{3}$ | B. | 64+$\frac{32π}{3}$ | C. | 16π | D. | 64+$\frac{256π}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
| A. | ?n∈N*,2n≤2n+1 | B. | ?n∈N*,2n>2n+1 | C. | ?n∈N*,2n=2n+1 | D. | ?n∈N*,2n≥2n+1 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com